scholarly journals Retrieval of Arbitrarily Shaped Raindrop Size Distributions from Wind Profiler Measurements

2005 ◽  
Vol 22 (4) ◽  
pp. 433-442 ◽  
Author(s):  
Takahisa Kobayashi ◽  
Ahoro Adachi

Abstract An efficient iterative retrieval method for arbitrarily shaped raindrop size distributions (ITRAN) is developed for Doppler spectra measured with a wind profiler. A measured Doppler spectrum is a convolution of the precipitation spectrum and the turbulent spectrum. Deconvolution of the Doppler spectra is achieved through repeated convolutions. The developed method assumes no prior shape of drop size distributions and automatically obtains raindrop size distributions; additionally, it can be applied to large data volumes. Furthermore, it is insensitive to initial values. The method was applied to both simulated and observed spectra. Derived drop size distributions agree with simulated values. Narrower turbulent spectral widths yield better results. Integral values of median volume diameter (D0), liquid water content (LWC), and radar reflectivity factor are estimated with errors of less than 10%. Accurate vertical profiles of raindrop size distributions result when this method is applied to wind profiler data. The technique performed very well with most observed spectra. Some recovered spectra departed from the corresponding measured spectra, for cases in which a clear-air peak could not be accurately reproduced because of uncertainties in the location of the minimum position between the clear-air echo and the precipitation echo. Statistical relationships between LWC and integral rainfall parameters yield interesting features. The median volume diameter is statistically independent of the LWC and is associated with the large variability of the total number of drops, NT, between events. Vertical profiles from one event show a clear inverse relationship between NT and D0

2015 ◽  
Vol 17 (1) ◽  
pp. 53-72 ◽  
Author(s):  
Katja Friedrich ◽  
Evan A. Kalina ◽  
Joshua Aikins ◽  
Matthias Steiner ◽  
David Gochis ◽  
...  

Abstract Drop size distributions observed by four Particle Size Velocity (PARSIVEL) disdrometers during the 2013 Great Colorado Flood are used to diagnose rain characteristics during intensive rainfall episodes. The analysis focuses on 30 h of intense rainfall in the vicinity of Boulder, Colorado, from 2200 UTC 11 September to 0400 UTC 13 September 2013. Rainfall rates R, median volume diameters D0, reflectivity Z, drop size distributions (DSDs), and gamma DSD parameters were derived and compared between the foothills and adjacent plains locations. Rainfall throughout the entire event was characterized by a large number of small- to medium-sized raindrops (diameters smaller than 1.5 mm) resulting in small values of Z (<40 dBZ), differential reflectivity Zdr (<1.3 dB), specific differential phase Kdp (<1° km−1), and D0 (<1 mm). In addition, high liquid water content was present throughout the entire event. Raindrops observed in the plains were generally larger than those in the foothills. DSDs observed in the foothills were characterized by a large concentration of small-sized drops (d < 1 mm). Heavy rainfall rates with slightly larger drops were observed during the first intense rainfall episode (0000–0800 UTC 12 September) and were associated with areas of enhanced low-level convergence and vertical velocity according to the wind fields derived from the Variational Doppler Radar Analysis System. The disdrometer-derived Z–R relationships reflect how unusual the DSDs were during the 2013 Great Colorado Flood. As a result, Z–R relations commonly used by the operational NEXRAD strongly underestimated rainfall rates by up to 43%.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


2007 ◽  
Vol 24 (5) ◽  
pp. 847-855 ◽  
Author(s):  
Dmitri N. Moisseev ◽  
V. Chandrasekar

Abstract Raindrop size distributions are often assumed to follow a three-parameter gamma distribution. Since rain intensity retrieval from radar observations is an underdetermined problem, there is great interest in finding physical correlations between the parameters of the gamma distribution. One of the more common approaches is to measure naturally occurring drop size distributions (DSDs) using a disdrometer and to find DSD parameters by fitting a gamma distribution to these observations. Often the method of moments is used to retrieve the parameters of a gamma distribution from disdrometer observations. In this work the effect of the method of moments and data filtering on the relation between the parameters of the DSD is investigated, namely, the shape μ and the slope Λ parameters. For this study the disdrometer observations were simulated. In these simulations the gamma distribution parameters Nw, D0, and μ were randomly selected from a wide range of values that are found in rainfall. Then, using simulated disdrometer measurements, DSD parameters were estimated using the method of moments. It is shown that the statistical errors associated with data filtering of disdrometer measurements might produce a spurious relation between μ and Λ parameters. It is also shown that three independent disdrometer measurements can be used to verify the existence of such a relation.


2012 ◽  
Vol 69 (5) ◽  
pp. 1534-1546 ◽  
Author(s):  
Olivier P. Prat ◽  
Ana P. Barros ◽  
Firat Y. Testik

Abstract The objective of this study is to evaluate the impact of a new parameterization of drop–drop collision outcomes based on the relationship between Weber number and drop diameter ratios on the dynamical simulation of raindrop size distributions. Results of the simulations with the new parameterization are compared with those of the classical parameterizations. Comparison with previous results indicates on average an increase of 70% in the drop number concentration and a 15% decrease in rain intensity for the equilibrium drop size distribution (DSD). Furthermore, the drop bounce process is parameterized as a function of drop size based on laboratory experiments for the first time in a microphysical model. Numerical results indicate that drop bounce has a strong influence on the equilibrium DSD, in particular for very small drops (<0.5 mm), leading to an increase of up to 150% in the small drop number concentration (left-hand side of the DSD) when compared to previous modeling results without accounting for bounce effects.


2021 ◽  
Author(s):  
Remko Uijlenhoet

<p>It has been stated that "the study of drop-size distributions, with its roots in both land-surface processes [e.g. interception, erosion, infiltration and surface runoff] and atmospheric remote sensing [e.g. radar meteorology], provides an important element to an integrated program of hydrometeorological research" (Smith, 1993). Although raindrop size distributions have been studied from a scientific perspective since the early 20th century, it was not until the mid-1990s that researchers realized that all parameterizations for the drop size distribution published until then could be summarized in the form of a scaling law, which provided "a general phenomenological formulation for drop size distribution" (Sempere Torres et al., 1994). The main implication of the proposed expression is that the integral rainfall variables (such as rain rate and radar reflectivity) are related by power laws, in agreement with experimental evidence. The proposed formulation naturally leads to a general methodology for scaling all raindrop size data in a unique plot, which yields more robust fits of the drop size distribution. Here, we provide a statistical interpretation of the law’s scaling exponents in terms of different modes of control on the space-time variability of drop size distributions, namely size-control vs. number-control, inspired by the work of Smith and De Veaux (1994). Also, an attempt will be made toward interpreting the values of the scaling exponents and the shape of the scaled drop size distribution in terms of the underlying (micro)physical processes.</p><p>REFERENCES</p><p>Smith, J. A., 1993: Precipitation. In Maidment, D. R., editor, Handbook of Hydrology, pages 3.1–3.47. McGraw-Hill, New York.</p><p>Sempere Torres, D., J.M. Porrà, and J.-D. Creutin, 1994: A general formulation for raindrop size distribution. J. Appl. Meteor., 33, 1494–1502.</p><p>Smith, J.A. and R.D. De Veaux, 1994: A stochastic model relating rainfall intensity to raindrop processes. Water Resour. Res., 30, 651–664.</p>


2007 ◽  
Vol 24 (6) ◽  
pp. 1019-1032 ◽  
Author(s):  
M. Thurai ◽  
G. J. Huang ◽  
V. N. Bringi ◽  
W. L. Randeu ◽  
M. Schönhuber

Drop shapes derived from a previously conducted artificial rain experiment using a two-dimensional video disdrometer (2DVD) are presented. The experiment involved drops falling over a distance of 80 m to achieve their terminal velocities as well as steady-state oscillations. The previous study analyzed the measured axis ratios (i.e., ratio of maximum vertical to maximum horizontal chord) as a function of equivolumetric spherical drop diameter (Deq) for over 115 000 drops ranging from 1.5 to 9 mm. In this paper, the actual contoured shapes of the drops are reported, taking into account the finite quantization limits of the instrument. The shapes were derived from the fast line-scanning cameras of the 2DVD. The drops were categorized into Deq intervals of 0.25-mm width and the smoothed contours for each drop category were superimposed on each other to obtain their most probable shapes and their variations due to drop oscillations. The most probable shapes show deviation from oblate spheroids for Deq > 4 mm, the larger drops having a more flattened base, in good agreement with the equilibrium (nonoblate) shape model of Beard and Chuang. Deviations were noted from the Beard and Chuang model shapes for diameters larger than 6 mm. However, the 2DVD measurements of the most probable contour shapes are the first to validate the Beard and Chuang model shapes for large drops, and further to demonstrate the differences from the equivalent oblate shapes. The purpose of this paper is to document the differences in radar polarization parameters and the range of error incurred when using the equivalent oblate shapes versus the most probable contoured shapes measured with the 2DVD especially for drop size distributions (DSDs) with large median volume diameters (>2 mm). The measured contours for Deq > 1.5 mm were fitted to a modified conical equation, and scattering calculations were performed to derive the complex scattering amplitudes for forward and backscatter for H and V polarizations primarily at 5.34 GHz (C band) but also at 3 GHz (S band) and 9 GHz (X band). Calculations were also made to derive the relevant dual-polarization radar parameters for measured as well as model-based drop size distributions. When comparing calculations using the contoured shapes against the equivalent oblate spheroid shapes, good agreement was obtained for cases with median volume diameter (D0) less than around 2 mm. Small systematic differences in the differential reflectivity (Zdr) values of up to 0.3 dB were seen for the larger D0 values when using the oblate shapes, which can be primarily attributed to the shape differences in the resonance region, which occurs in the 5.5–7-mm-diameter range at C band. Lesser systematic differences were present in the resonance region at X band (3–4 mm). At S band, the impact of shape differences in the polarimetric parameters were relatively minor for D0 up to 2.5 mm. Unusual DSDs with very large D0 values (>3 mm) (e.g., as can occur along the leading edge of severe convective storms or aloft due localized “big drop” zones) can accentuate the Zdr difference between the contoured shape and the oblate spheroid equivalent, especially at C band. For attenuation-correction schemes based on differential propagation phase, it appears that the equivalent oblate shape approximation is sufficient using a fit to the axis ratios from the 80-m fall experiment given in this paper. For high accuracy in developing algorithms for predicting D0 from Zdr, it is recommended that the fit to the most probable contoured shapes as given in this paper be used especially at C band.


2005 ◽  
Vol 44 (12) ◽  
pp. 1930-1949 ◽  
Author(s):  
Gerhard Peters ◽  
Bernd Fischer ◽  
Hans Münster ◽  
Marco Clemens ◽  
Andreas Wagner

Abstract Data of vertically pointing microrain radars (MRRs), located at various sites around the Baltic Sea, were analyzed for a period of several years. From the Doppler spectra profiles of drop size distributions (DSDs) are obtained. A significant height dependence of the shape of the DSDs—and thus of the Z–R relations—is observed at high rain rates. This implies, for the considered sites, that ground-based Z–R relations lead to underestimation of high rain rates by weather radars.


2011 ◽  
Vol 68 (9) ◽  
pp. 1902-1910 ◽  
Author(s):  
P. T. May ◽  
V. N. Bringi ◽  
M. Thurai

Abstract Rain drop size distributions retrieved from polarimetric radar measurements over regularly occurring thunderstorms over the islands north of Darwin, Australia, are used to test if aerosol contributions to the probability distributions of the drop size distribution parameters (median volume diameter and normalized intercept parameter) are detectable. The observations reported herein are such that differences in cloud properties arising from thermodynamic differences are minimized but even so may be a factor. However, there is a clear signature that high aerosol concentrations are correlated with smaller number concentrations and larger drops. This may be associated with enhanced ice multiplication processes for low aerosol concentration storms or other processes such as invigoration of the updrafts.


Sign in / Sign up

Export Citation Format

Share Document