scholarly journals Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth

2006 ◽  
Vol 23 (8) ◽  
pp. 1082-1092 ◽  
Author(s):  
Abram R. Jacobson ◽  
Robert Holzworth ◽  
Jeremiah Harlin ◽  
Richard Dowden ◽  
Erin Lay

Abstract The World Wide Lighting Location Network (WWLLN) locates lightning globally, using sparsely distributed very low frequency (VLF) detection stations. Due to WWLLN’s detection at VLF (in this case ∼10 kHz), the lightning signals from strong strokes can propagate up to ∼104 km to WWLLN sensors and still be suitable for triggering a station. A systematic evaluation of the performance of WWLLN is undertaken, using a higher-frequency (0–500 kHz) detection array [the Los Alamos Sferic Array (LASA)] as a ground truth during an entire thunderstorm season in a geographically confined case study in Florida. It is found that (a) WWLLN stroke-detection efficiency rises sharply to several percent as the estimated lightning current amplitude surpasses ∼30 kA; (b) WWLLN spatial accuracy is around 15 km, good enough to resolve convective-storm cells within a larger storm complex; (c) WWLLN is able to detect intracloud and cloud-to-ground discharges with comparable efficiency, as long as the current is comparable; (d) WWLLN detects lightning-producing storms with high efficiency in every 3-h epoch; thus, WWLLN can be useful for locating deep convection for weather forecasting on 3-h update cycles; and (e) WWLLN detects a stroke count in each storm that is weakly proportional to the stroke count detected by LASA. Thus, to the extent that lightning rate can serve as a statistical proxy for rainfall, WWLLN may eventually provide rainfall-proxy data to be assimilated in 3-h forecast update cycles.

2018 ◽  
Vol 35 (4) ◽  
pp. 927-939 ◽  
Author(s):  
Penglei Fan ◽  
Dong Zheng ◽  
Yijun Zhang ◽  
Shanqiang Gu ◽  
Wenjuan Zhang ◽  
...  

AbstractA systematic evaluation of the performance of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau is conducted using data from the Cloud-to-Ground Lightning Location System (CGLLS) developed by the State Grid Corporation of China for 2013–15 and lightning data from the satellite-based Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) for 2014–15. The average spatial location separation magnitudes in the midsouthern Tibetan Plateau (MSTP) region between matched WWLLN and CGLLS strokes and over the whole Tibetan Plateau between matched WWLLN and LIS flashes were 9.97 and 10.93 km, respectively. The detection efficiency (DE) of the WWLLN rose markedly with increasing stroke peak current, and the mean stroke peak currents of positive and negative cloud-to-ground (CG) lightning detected by the WWLLN in the MSTP region were 62.43 and −56.74 kA, respectively. The duration, area, and radiance of the LIS flashes that were also detected by the WWLLN were 1.27, 2.65, and 4.38 times those not detected by the WWLLN. The DE of the WWLLN in the MSTP region was 9.37% for CG lightning and 2.58% for total lightning. Over the Tibetan Plateau, the DE of the WWLLN for total lightning was 2.03%. In the MSTP region, the CG flash data made up 71.98% of all WWLLN flash data. Based on the abovementioned results, the ratio of intracloud (IC) lightning to CG lightning in the MSTP region was estimated to be 4.05.


Radio Science ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. L. Hutchins ◽  
R. H. Holzworth ◽  
J. B. Brundell ◽  
C. J. Rodger

2009 ◽  
Author(s):  
C. J. Rodger ◽  
J. B. Brundell ◽  
R. H. Holzworth ◽  
E. H. Lay ◽  
Norma B. Crosby ◽  
...  

2010 ◽  
Vol 3 (2) ◽  
pp. 1861-1887 ◽  
Author(s):  
D. Abreu ◽  
D. Chandan ◽  
R. H. Holzworth ◽  
K. Strong

Abstract. The World Wide Lightning Location Network (WWLLN) uses globally-distributed Very Low Frequency (VLF) receivers in order to observe lightning around the globe. Its objective is to locate as many global strokes as possible, with high temporal and spatial (<10 km) accuracy. Since detection is done in the VLF range, signals from high peak current lightning strokes are able to propagate up to ~104 km before being detected by the WWLLN sensors, allowing for receiving stations to be sparsely spaced. Through a comparison with measurements made by the Canadian Lightning Detection Network (CLDN) between May and August 2008 over a 4° latitude by 4° longitude region centered on Toronto, Canada, this study found that WWLLN detection was most sensitive to high peak current lightning strokes. Events were considered shared between the two networks if they fell within 0.5 ms of each other. Using this criterion, 19 128 WWLLN strokes (analyzed using the Stroke_B algorithm) were shared with CLDN lightning strokes, producing a detection efficiency of 2.8%. The peak current threshold for WWLLN detection is found to be ~20 kA, with the detection efficiency increasing to ~70% at peak currents of ±120 kA. The detection efficiency is seen to have a clear diurnal dependence, with a higher detection efficiency at local midnight than at local noon; this is attributed to the difference in the thickness of the ionospheric D-region between night and day. The mean time difference (WWLLN – CLDN) between shared events was −6.44 μs with a standard deviation of 35 μs, and the mean absolute location accuracy was 7.24 km with a standard deviation of 6.34 km. These results are generally consistent with previous comparison studies of the WWLLN with other regional networks around the world. Additional receiver stations are continuously being added to the network, acting to improve this detection efficiency.


The increasing usage of internet, online stores and social media has provided the users to express their opinion, attitude and views without any reluctance and fear on the World Wide Web. These opinions expressed by the users can be related to a product or service as well as any global issues. The colossal growth of the web technology has offered the consumers to know more about the products they intend to buy from the existing customer’s reviews. This paper focuses on analyzing the opinion by splitting the positive and negative opinion and then guides the user about the ground truth regarding the performance and quality of the product. The important idea here is to categorize the important features of the product and then accordingly provide the feature wise computation instead of roughly promoting a product as good or bad.


2010 ◽  
Vol 3 (4) ◽  
pp. 1143-1153 ◽  
Author(s):  
D. Abreu ◽  
D. Chandan ◽  
R. H. Holzworth ◽  
K. Strong

Abstract. The World Wide Lightning Location Network (WWLLN) uses globally-distributed Very Low Frequency (VLF) receivers in order to observe lightning around the globe. Its objective is to locate as many global lightning strokes as possible, with high temporal and spatial (< 10 km) accuracy. Since detection is done in the VLF range, signals from high peak current lightning strokes are able to propagate up to ~104 km before being detected by the WWLLN sensors, allowing for receiving stations to be sparsely spaced. Through a comparison with measurements made by the Canadian Lightning Detection Network (CLDN) between May and August 2008 over a 4° latitude by 4° longitude region centered on Toronto, Canada, this study found that WWLLN detection was most sensitive to high peak current lightning strokes. Events were considered shared between the two networks if they fell within 0.5 ms of each other. Using this criterion, 19 128 WWLLN strokes (analyzed using the Stroke_B algorithm) were shared with CLDN lightning strokes, producing a detection efficiency of 2.8%. The peak current threshold for WWLLN detection is found to be ~20 kA, with its detection efficiency increasing from 11.3% for peak currents greater than 20 kA to 75.8% for peak currents greater than 120 kA. The detection efficiency is seen to have a clear diurnal dependence, with a higher detection efficiency at local midnight than at local noon; this is attributed to the difference in the thickness of the ionospheric D-region between night and day. The mean time difference (WWLLN − CLDN) between shared events was −6.44 μs with a standard deviation of 35 μs, and the mean absolute location accuracy was 7.24 km with a standard deviation of 6.34 km. These results are generally consistent with previous comparison studies of the WWLLN with other regional networks around the world. Additional receiver stations are continuously being added to the network, acting to improve this detection efficiency.


1994 ◽  
Vol 144 ◽  
pp. 139-141 ◽  
Author(s):  
J. Rybák ◽  
V. Rušin ◽  
M. Rybanský

AbstractFe XIV 530.3 nm coronal emission line observations have been used for the estimation of the green solar corona rotation. A homogeneous data set, created from measurements of the world-wide coronagraphic network, has been examined with a help of correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1947 to 1991.The values of the synodic rotation period obtained for this epoch for the whole range of latitudes and a latitude band ±30° are 27.52±0.12 days and 26.95±0.21 days, resp. A differential rotation of green solar corona, with local period maxima around ±60° and minimum of the rotation period at the equator, was confirmed. No clear cyclic variation of the rotation has been found for examinated epoch but some monotonic trends for some time intervals are presented.A detailed investigation of the original data and their correlation functions has shown that an existence of sufficiently reliable tracers is not evident for the whole set of examinated data. This should be taken into account in future more precise estimations of the green corona rotation period.


Sign in / Sign up

Export Citation Format

Share Document