Direct Assimilation of AMSR-E Brightness Temperatures for Estimating Sea Ice Concentration

2012 ◽  
Vol 140 (3) ◽  
pp. 997-1013 ◽  
Author(s):  
K. Andrea Scott ◽  
Mark Buehner ◽  
Alain Caya ◽  
Tom Carrieres

Abstract In this paper a method to directly assimilate brightness temperatures from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) to produce ice concentration analyses within a three-dimensional variational data assimilation system is investigated. To assimilate the brightness temperatures a simple radiative transfer model is used as the forward model that maps the state vector to the observation space. This allows brightness temperatures to be modeled for all channels as a function of the total ice concentration, surface wind speed, sea surface temperature, ice temperature, vertically integrated water vapor, and vertically integrated cloud liquid water. The brightness temperatures estimated by the radiative transfer model are sensitive to the specified values for the sea ice emissivity. In this paper, two methods of specifying the sea ice emissivity are compared. The first uses a constant value for each polarization and frequency, while the second uses a simple emissivity parameterization. The emissivity parameterization is found to significantly improve the fit to the observations, reducing both the bias and the standard deviation. Results from the assimilation of brightness temperatures are compared with those from assimilating a retrieved ice concentration in the context of initializing a coupled ice–ocean model for an area along the east coast of Canada. It is found that with the emissivity parameterization the assimilation of brightness temperatures produces ice concentration analyses that are in slightly better agreement with operational ice charts than when assimilating an ice concentration retrieval, with the most significant improvements during the melt season.

2019 ◽  
Vol 11 (22) ◽  
pp. 2650
Author(s):  
Abdusalam Alasgah ◽  
Maria Jacob ◽  
Linwood Jones ◽  
Larry Schneider

The airborne Hurricane Imaging Radiometer (HIRAD) was developed to remotely sense hurricane surface wind speed (WS) and rain rate (RR) from a high-altitude aircraft. The approach was to obtain simultaneous brightness temperature measurements over a wide frequency range to independently retrieve the WS and RR. In the absence of rain, the WS retrieval has been robust; however, for moderate to high rain rates, the joint WS/RR retrieval has not been successful. The objective of this paper was to resolve this issue by developing an improved forward radiative transfer model (RTM) for the HIRAD cross-track viewing geometry, with separated upwelling and specularly reflected downwelling atmospheric paths. Furthermore, this paper presents empirical results from an unplanned opportunity that occurred when HIRAD measured brightness temperatures over an intense tropical squall line, which was simultaneously observed by a ground based NEXRAD (Next Generation Weather Radar) radar. The independently derived NEXRAD RR created the simultaneous 3D rain field “surface truth”, which was used as an input to the RTM to generate HIRAD modeled brightness temperatures. This paper presents favorable results of comparisons of theoretical and the simultaneous, collocated HIRAD brightness temperature measurements that validate the accuracy of this new HIRAD RTM.


2020 ◽  
Vol 12 (10) ◽  
pp. 1594
Author(s):  
Catherine Prigent ◽  
Lise Kilic ◽  
Filipe Aires ◽  
Victor Pellet ◽  
Carlos Jimenez

A new methodology has been described in Kilic et al. (Ice Concentration Retrieval from the Analysis of Microwaves: A New Methodology Designed for the Copernicus Imaging Microwave Radiometer, Remote Sensing 2020, 12, 1060, Part 1 of this study) to estimate Sea Ice Concentration (SIC) from satellite passive microwave observations between 6 and 36 GHz. The Ice Concentration Retrieval from the Analysis of Microwaves (IceCREAM) algorithm is based on an optimal estimation, with a simple radiative transfer model derived from satellite observations at 0% and 100% SIC. Observations at low and high frequencies have different spatial resolutions, and a scheme is developed to benefit from the low errors of the low frequencies and the high spatial resolutions of the high frequencies. This effort is specifically designed for the Copernicus Imaging Microwave Radiometer (CIMR) project, equipped with a large deployable antenna to provide a spatial resolution of ∼5 km at 18 and 36 GHz, and ∼15 km at 6 and 10 GHz. The algorithm is tested with Advanced Microwave Scanning Radiometer 2 (AMSR2) observations, for a clear scene over the north polar region, with collocated Moderate Resolution Imaging Spectroradiometer (MODIS) estimates and the Ocean Sea Ice—Satellite Application Facilities (OSI SAF) operational products. Several algorithm options are tested, and the study case shows that both high spatial resolution and low errors are obtained with the IceCREAM method. It is also tested for the full polar regions, winter and summer, under clear and cloudy conditions. Our method is globally applicable, without fine-tuning or further weather filtering. The systematic use of all channels from 6 to 36 GHz makes it robust to changes in ice surface conditions and to weather interactions.


2016 ◽  
Author(s):  
R. T. Tonboe ◽  
S. Eastwood ◽  
T. Lavergne ◽  
A. M. Sørensen ◽  
N. Rathmann ◽  
...  

Abstract. An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of American microwave radiometer data from Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from 1978 to 2014 and updates and further developments are planned for the next phase of the project. The methodology is using: 1) numerical weather prediction (NWP) input to a radiative transfer model (RTM) for correction of the brightness temperatures for reduction of atmospheric noise, 2) dynamical algorithm tie-points to mitigate trends in residual atmospheric, sea ice and water emission characteristics and inter-sensor differences/biases, 3) and a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new algorithm has been developed to estimate the spatially and temporally varying sea ice concentration uncertainties. A comparison to sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate ice concentrations. The sea ice climate dataset is available for download at (www.osisaf.org) including documentation.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2018 ◽  
Vol 12 (4) ◽  
pp. 1331-1345 ◽  
Author(s):  
Peng Lu ◽  
Matti Leppäranta ◽  
Bin Cheng ◽  
Zhijun Li ◽  
Larysa Istomina ◽  
...  

Abstract. Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi  <  1.5 m) and to pond depth Hp for thick ice (Hi  >  1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi  <  1 m) agree better with field measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.


2010 ◽  
Vol 27 (10) ◽  
pp. 1609-1623 ◽  
Author(s):  
B. Petrenko ◽  
A. Ignatov ◽  
Y. Kihai ◽  
A. Heidinger

Abstract The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.


2014 ◽  
Vol 7 (4) ◽  
pp. 5661-5698 ◽  
Author(s):  
R. Marsh ◽  
V. O. Ivchenko ◽  
N. Skliris ◽  
S. Alderson ◽  
G. R. Bigg ◽  
...  

Abstract. NEMO-ICB features interactive icebergs in the NEMO ocean model. Simulations with coarse (2°) and eddy-permitting (0.25°) global configurations of NEMO-ICB are undertaken to evaluate the influence of icebergs on sea-ice, hydrography and transports, through comparison with control simulations in which the equivalent iceberg mass flux is applied as coastal runoff, the default forcing in NEMO. Comparing a short (14 year) spin-up of the 0.25° model with a computationally cheaper 105 year spin-up of the 2° configuration, calving, drift and melting of icebergs is evidently near equilibrium in the shorter simulation, justifying closer examination of iceberg influences in the eddy-permitting configuration. Freshwater forcing due to iceberg melt is most pronounced in southern high latitudes, where it is locally dominant over precipitation. Sea ice concentration and thickness in the Southern Ocean are locally increased with icebergs, by up to ~ 8 and ~ 25% respectively. Iceberg melting reduces surface salinity by ~ 0.2 psu around much of Antarctica, with compensating increases immediately adjacent to Antarctica, where coastal runoff is suppressed. Discernible effects on salinity and temperature extend to 1000 m. At many locations and levels, freshening and cooling indicate a degree of density compensation. However, freshening is a dominant influence on upper ocean density gradients across much of the high-latitude Southern Ocean, leading to weaker meridional density gradients, a reduced eastward transport tendency, and hence an increase of ~ 20% in westward transport of the Antarctic Coastal Current.


2016 ◽  
Vol 10 (5) ◽  
pp. 2217-2239 ◽  
Author(s):  
Stefan Kern ◽  
Anja Rösel ◽  
Leif Toudal Pedersen ◽  
Natalia Ivanova ◽  
Roberto Saldo ◽  
...  

Abstract. Sea-ice concentrations derived from satellite microwave brightness temperatures are less accurate during summer. In the Arctic Ocean the lack of accuracy is primarily caused by melt ponds, but also by changes in the properties of snow and the sea-ice surface itself. We investigate the sensitivity of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea-ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso bootstrap frequency mode (Bootstrap_f), sea-ice concentrations are linearly related to the MODIS melt-pond fraction quite clearly after June. For other algorithms, e.g., Near90GHz and Comiso bootstrap polarization mode (Bootstrap_p), this relationship is weaker and develops later in summer. We attribute the variation of the sensitivity to the melt-pond fraction across the algorithms to a different sensitivity of the brightness temperatures to snow-property variations. We find an underestimation of the sea-ice concentration by between 14 % (Bootstrap_f) and 26 % (Bootstrap_p) for 100 % sea ice with a melt-pond fraction of 40 %. The underestimation reduces to 0 % for a melt-pond fraction of 20 %. In presence of real open water between ice floes, the sea-ice concentration is overestimated by between 26 % (Bootstrap_f) and 14 % (Bootstrap_p) at 60 % sea-ice concentration and by 20 % across all algorithms at 80 % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property variations is less pronounced.


Sign in / Sign up

Export Citation Format

Share Document