scholarly journals Validation of the Hurricane Imaging Radiometer Forward Radiative Transfer Model for a Convective Rain Event

2019 ◽  
Vol 11 (22) ◽  
pp. 2650
Author(s):  
Abdusalam Alasgah ◽  
Maria Jacob ◽  
Linwood Jones ◽  
Larry Schneider

The airborne Hurricane Imaging Radiometer (HIRAD) was developed to remotely sense hurricane surface wind speed (WS) and rain rate (RR) from a high-altitude aircraft. The approach was to obtain simultaneous brightness temperature measurements over a wide frequency range to independently retrieve the WS and RR. In the absence of rain, the WS retrieval has been robust; however, for moderate to high rain rates, the joint WS/RR retrieval has not been successful. The objective of this paper was to resolve this issue by developing an improved forward radiative transfer model (RTM) for the HIRAD cross-track viewing geometry, with separated upwelling and specularly reflected downwelling atmospheric paths. Furthermore, this paper presents empirical results from an unplanned opportunity that occurred when HIRAD measured brightness temperatures over an intense tropical squall line, which was simultaneously observed by a ground based NEXRAD (Next Generation Weather Radar) radar. The independently derived NEXRAD RR created the simultaneous 3D rain field “surface truth”, which was used as an input to the RTM to generate HIRAD modeled brightness temperatures. This paper presents favorable results of comparisons of theoretical and the simultaneous, collocated HIRAD brightness temperature measurements that validate the accuracy of this new HIRAD RTM.

2012 ◽  
Vol 140 (3) ◽  
pp. 997-1013 ◽  
Author(s):  
K. Andrea Scott ◽  
Mark Buehner ◽  
Alain Caya ◽  
Tom Carrieres

Abstract In this paper a method to directly assimilate brightness temperatures from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) to produce ice concentration analyses within a three-dimensional variational data assimilation system is investigated. To assimilate the brightness temperatures a simple radiative transfer model is used as the forward model that maps the state vector to the observation space. This allows brightness temperatures to be modeled for all channels as a function of the total ice concentration, surface wind speed, sea surface temperature, ice temperature, vertically integrated water vapor, and vertically integrated cloud liquid water. The brightness temperatures estimated by the radiative transfer model are sensitive to the specified values for the sea ice emissivity. In this paper, two methods of specifying the sea ice emissivity are compared. The first uses a constant value for each polarization and frequency, while the second uses a simple emissivity parameterization. The emissivity parameterization is found to significantly improve the fit to the observations, reducing both the bias and the standard deviation. Results from the assimilation of brightness temperatures are compared with those from assimilating a retrieved ice concentration in the context of initializing a coupled ice–ocean model for an area along the east coast of Canada. It is found that with the emissivity parameterization the assimilation of brightness temperatures produces ice concentration analyses that are in slightly better agreement with operational ice charts than when assimilating an ice concentration retrieval, with the most significant improvements during the melt season.


2018 ◽  
Vol 10 (9) ◽  
pp. 1451 ◽  
Author(s):  
Alexandre Roy ◽  
Marion Leduc-Leballeur ◽  
Ghislain Picard ◽  
Alain Royer ◽  
Peter Toose ◽  
...  

Detailed angular ground-based L-band brightness temperature (TB) measurements over snow covered frozen soil in a prairie environment were used to parameterize and evaluate an electromagnetic model, the Wave Approach for LOw-frequency MIcrowave emission in Snow (WALOMIS), for seasonal snow. WALOMIS, initially developed for Antarctic applications, was extended with a soil interface model. A Gaussian noise on snow layer thickness was implemented to account for natural variability and thus improve the TB simulations compared to observations. The model performance was compared with two radiative transfer models, the Dense Media Radiative Transfer-Multi Layer incoherent model (DMRT-ML) and a version of the Microwave Emission Model for Layered Snowpacks (MEMLS) adapted specifically for use at L-band in the original one-layer configuration (LS-MEMLS-1L). Angular radiometer measurements (30°, 40°, 50°, and 60°) were acquired at six snow pits. The root-mean-square error (RMSE) between simulated and measured TB at vertical and horizontal polarizations were similar for the three models, with overall RMSE between 7.2 and 10.5 K. However, WALOMIS and DMRT-ML were able to better reproduce the observed TB at higher incidence angles (50° and 60°) and at horizontal polarization. The similar results obtained between WALOMIS and DMRT-ML suggests that the interference phenomena are weak in the case of shallow seasonal snow despite the presence of visible layers with thicknesses smaller than the wavelength, and the radiative transfer model can thus be used to compute L-band brightness temperature.


2020 ◽  
Vol 28 (18) ◽  
pp. 25730
Author(s):  
Wenwen Li ◽  
Feng Zhang ◽  
Yi-Ning Shi ◽  
Hironobu Iwabuchi ◽  
Mingwei Zhu ◽  
...  

2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2019 ◽  
Vol 11 (20) ◽  
pp. 2338 ◽  
Author(s):  
Liu ◽  
Chu ◽  
Yin ◽  
Liu

Accurate precipitation detection is one of the most important factors in satellite data assimilation, due to the large uncertainties associated with precipitation properties in radiative transfer models and numerical weather prediction (NWP) models. In this paper, a method to achieve remote sensing of precipitation and classify its intensity over land using a co-located ground-based radar network is described. This method is intended to characterize the O−B biases for the microwave humidity sounder -2 (MWHS-2) under four categories of precipitation: precipitation-free (0–5 dBZ), light precipitation (5–20 dBZ), moderate precipitation (20–35 dBZ), and intense precipitation (>35 dBZ). Additionally, O represents the observed brightness temperature (TB) of the satellite and B is the simulated TB from the model background field using the radiative transfer model. Thresholds for the brightness temperature differences between channels, as well as the order relation between the differences, exhibited a good estimation of precipitation. It is demonstrated that differences between observations and simulations were predominantly due to the cases in which radar reflectivity was above 15 dBZ. For most channels, the biases and standard deviations of O−B increased with precipitation intensity. Specifically, it is noted that for channel 11 (183.31 ± 1 GHz), the standard deviations of O−B under moderate and intense precipitation were even smaller than those under light precipitation and precipitation-free conditions. Likewise, abnormal results can also be seen for channel 4 (118.75 ± 0.3 GHz).


2020 ◽  
Vol 12 (18) ◽  
pp. 2939
Author(s):  
Chang-Hwan Park ◽  
Thomas Jagdhuber ◽  
Andreas Colliander ◽  
Johan Lee ◽  
Aaron Berg ◽  
...  

An accurate radiative transfer model (RTM) is essential for the retrieval of soil moisture (SM) from microwave remote sensing data, such as the passive microwave measurements from the Soil Moisture Active Passive (SMAP) mission. This mission delivers soil moisture products based upon L-band brightness temperature data, via retrieval algorithms for surface and root-zone soil moisture, the latter is retrieved using data assimilation and model support. We found that the RTM based on the tau-omega (τ-ω) model can suffer from significant errors over croplands in the simulation of brightness temperature (Tb) (in average between −9.4K and +12.0K for single channel algorithm (SCA); −8K and +9.7K for dual-channel algorithm (DCA)) if the vegetation scattering albedo (omega) is set constant and temporal variations are not considered. In order to reduce this uncertainty, we propose a time-varying parameterization of omega for the widely established zeroth order radiative transfer τ-ω model. The main assumption is that omega can be expressed by a functional relationship between vegetation optical depth (tau) and the Green Vegetation Fraction (GVF). Assuming allometry in the tau-omega relationship, a power-law function was established and it is supported by correlating measurements of tau and GVF. With this relationship, both tau and omega increase during the development of vegetation. The application of the proposed time-varying vegetation scattering albedo results in a consistent improvement for the unbiased root mean square error of 16% for SCA and 15% for DCA. The reduction for positive and negative biases was 45% and 5% for SCA and 26% and 12% for DCA, respectively. This indicates that vegetation dynamics within croplands are better represented by a time-varying single scattering albedo. Based on these results, we anticipate that the time-varying omega within the tau-omega model will help to mitigate potential estimation errors in the current SMAP soil moisture products (SCA and DCA). Furthermore, the improved tau-omega model might serve as a more accurate observation operator for SMAP data assimilation in weather and climate prediction model.


2010 ◽  
Vol 27 (10) ◽  
pp. 1609-1623 ◽  
Author(s):  
B. Petrenko ◽  
A. Ignatov ◽  
Y. Kihai ◽  
A. Heidinger

Abstract The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.


1993 ◽  
Vol 17 ◽  
pp. 300-306 ◽  
Author(s):  
C.J. Van Der Veen ◽  
K. C. Jezek

The radiative-transfer model developed by Zwally (1977) is modified and coupled to a one-dimensional time-dependent temperature model, to calculate the seasonal variation in brightness temperature. By comparing this with observed records, the radiative properties of firn can be determined. By retaining scattering as a source term in the radiative transfer function, agreement between model-derived scattering and absorption coefficients and those calculated from the Mie/Rayleigh scattering theory can be obtained. The horizontal brightness temperature is not linked to the vertical one through a constant power reflection coefficient.


2015 ◽  
Vol 15 (23) ◽  
pp. 34497-34532
Author(s):  
C. Pettersen ◽  
R. Bennartz ◽  
M. S. Kulie ◽  
A. J. Merrelli ◽  
M. D. Shupe ◽  
...  

Abstract. Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.


Sign in / Sign up

Export Citation Format

Share Document