scholarly journals Clear-Sky Mask for the Advanced Clear-Sky Processor for Oceans

2010 ◽  
Vol 27 (10) ◽  
pp. 1609-1623 ◽  
Author(s):  
B. Petrenko ◽  
A. Ignatov ◽  
Y. Kihai ◽  
A. Heidinger

Abstract The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.

2016 ◽  
Vol 33 (12) ◽  
pp. 2553-2567 ◽  
Author(s):  
X. Zou ◽  
X. Zhuge ◽  
F. Weng

AbstractStarting in 2014, the new generation of Japanese geostationary meteorological satellites carries an Advanced Himawari Imager (AHI) to provide the observations of visible, near infrared, and infrared with much improved spatial and temporal resolutions. For applications of the AHI measurements in numerical weather prediction (NWP) data assimilation systems, the biases of the AHI brightness temperatures at channels 7–16 from the model simulations are first characterized and evaluated using both the Community Radiative Transfer Model (CRTM) and the Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV). It is found that AHI biases under a clear-sky atmosphere are independent of satellite zenith angle except for channel 7. The biases of three water vapor channels increase with scene brightness temperatures and are nearly constant except at high brightness temperatures for the remaining infrared channels. The AHI biases at all the infrared channels are less than 0.6 and 1.2 K over ocean and land, respectively. The differences in biases between RTTOV and CRTM with the land surface emissivity model used in RTTOV are small except for the upper-tropospheric water vapor channels 8 and 9 and the low-tropospheric carbon dioxide channel 16. Since the inputs used for simulations are the same for CRTM and RTTOV, the differential biases at the water vapor channels may be associated with subtle differences in forward models.


2009 ◽  
Vol 26 (9) ◽  
pp. 1968-1972 ◽  
Author(s):  
Quanhua Liu ◽  
Xingming Liang ◽  
Yong Han ◽  
Paul van Delst ◽  
Yong Chen ◽  
...  

Abstract The Community Radiative Transfer Model (CRTM) developed at the Joint Center for Satellite Data Assimilation (JCSDA) is used in conjunction with a daily sea surface temperature (SST) and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) atmospheric data and surface wind to calculate clear-sky top-of-atmosphere (TOA) brightness temperatures (BTs) in three Advanced Very High Resolution Radiometer (AVHRR) thermal infrared channels over global oceans. CRTM calculations are routinely performed by the sea surface temperature team for four AVHRR instruments on board the National Oceanic and Atmospheric Administration (NOAA) satellites NOAA-16, NOAA-17, and NOAA-18 and the Meteorological Operation (MetOp) satellite MetOp-A, and they are compared with clear-sky TOA BTs produced by the operational AVHRR Clear-Sky Processor for Oceans (ACSPO). It was observed that the model minus observation (M−O) bias in the NOAA-16 AVHRR channel 3b (Ch3b) centered at 3.7 μm experienced a discontinuity of ∼0.3 K when a new CRTM version 1.1 (v.1.1) was implemented in ACSPO processing in September 2008. No anomalies occurred in any other AVHRR channel or for any other platform. This study shows that this discontinuity is caused by the out-of-band response in NOAA-16 AVHRR Ch3b and by using a single layer to the NCEP GFS temperature profiles above 10 hPa for the alpha version of CRTM. The problem has been solved in CRTM v.1.1, which uses one of the six standard atmospheres to fill in the missing data above the top pressure level in the input NCEP GFS data. It is found that, because of the out-of-band response, the NOAA-16 AVHRR Ch3b has sensitivity to atmospheric temperature at high altitudes. This analysis also helped to resolve another anomaly in the absorption bands of the High Resolution Infrared Radiation Sounder (HIRS) sensor, whose radiances and Jacobians were affected to a much greater extent by this CRTM inconsistency.


2013 ◽  
Vol 30 (9) ◽  
pp. 2152-2160 ◽  
Author(s):  
Yong Chen ◽  
Yong Han ◽  
Paul van Delst ◽  
Fuzhong Weng

Abstract The nadir-viewing satellite radiances at shortwave infrared channels from 3.5 to 4.6 μm are not currently assimilated in operational numerical weather prediction data assimilation systems and are not adequately corrected for applications of temperature retrieval at daytime. For satellite observations over the ocean during the daytime, the radiance in the surface-sensitive shortwave infrared is strongly affected by the reflected solar radiance, which can contribute as much as 20.0 K to the measured brightness temperatures (BT). The nonlocal thermodynamic equilibrium (NLTE) emission in the 4.3-μm CO2 band can add a further 10 K to the measured BT. In this study, a bidirectional reflectance distribution function (BRDF) is developed for the ocean surface and an NLTE radiance correction scheme is investigated for the hyperspectral sensors. Both effects are implemented in the Community Radiative Transfer Model (CRTM). The biases of CRTM simulations to Infrared Atmospheric Sounding Interferometer (IASI) observations and the standard deviations of the biases are greatly improved during daytime (about a 1.5-K bias for NLTE channels and a 0.3-K bias for surface-sensitive shortwave channels) and are very close to the values obtained during the night. These improved capabilities in CRTM allow for effective uses of satellite data at short infrared wavelengths in data assimilation systems and in atmospheric soundings throughout the day and night.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

<p>The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon – but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains – from a regular array of cubes to real cities .</p><p>SU agrees with DART (errors < 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (< 10%) and shortwave transmission to the surface (< 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.</p>


2019 ◽  
Vol 11 (20) ◽  
pp. 2338 ◽  
Author(s):  
Liu ◽  
Chu ◽  
Yin ◽  
Liu

Accurate precipitation detection is one of the most important factors in satellite data assimilation, due to the large uncertainties associated with precipitation properties in radiative transfer models and numerical weather prediction (NWP) models. In this paper, a method to achieve remote sensing of precipitation and classify its intensity over land using a co-located ground-based radar network is described. This method is intended to characterize the O−B biases for the microwave humidity sounder -2 (MWHS-2) under four categories of precipitation: precipitation-free (0–5 dBZ), light precipitation (5–20 dBZ), moderate precipitation (20–35 dBZ), and intense precipitation (>35 dBZ). Additionally, O represents the observed brightness temperature (TB) of the satellite and B is the simulated TB from the model background field using the radiative transfer model. Thresholds for the brightness temperature differences between channels, as well as the order relation between the differences, exhibited a good estimation of precipitation. It is demonstrated that differences between observations and simulations were predominantly due to the cases in which radar reflectivity was above 15 dBZ. For most channels, the biases and standard deviations of O−B increased with precipitation intensity. Specifically, it is noted that for channel 11 (183.31 ± 1 GHz), the standard deviations of O−B under moderate and intense precipitation were even smaller than those under light precipitation and precipitation-free conditions. Likewise, abnormal results can also be seen for channel 4 (118.75 ± 0.3 GHz).


2015 ◽  
Vol 8 (3) ◽  
pp. 3357-3397 ◽  
Author(s):  
D. J. Zawada ◽  
S. R. Dueck ◽  
L. A. Rieger ◽  
A. E. Bourassa ◽  
N. D. Lloyd ◽  
...  

Abstract. The OSIRIS instrument on board the Odin spacecraft has been measuring limb scattered radiance since 2001. The vertical radiance profiles measured as the instrument nods are inverted, with the aid of the SASKTRAN radiative transfer model, to obtain vertical profiles of trace atmospheric constituents. Here we describe two newly developed modes of the SASKTRAN radiative transfer model: a high spatial resolution mode, and a Monte Carlo mode. The high spatial resolution mode is a successive orders model capable of modelling the multiply scattered radiance when the atmosphere is not spherically symmetric; the Monte Carlo mode is intended for use as a highly accurate reference model. It is shown that the two models agree in a wide variety of solar conditions to within 0.2%. As an example case for both models, Odin-OSIRIS scans were simulated with the Monte Carlo model and retrieved using the high resolution model. A systematic bias of up to 4% in retrieved ozone number density between scans where the instrument is scanning up or scanning down was identified. It was found that calculating the multiply scattered diffuse field at five discrete solar zenith angles is sufficient to eliminate the bias for typical Odin-OSIRIS geometries.


2016 ◽  
Author(s):  
Francesco De Angelis ◽  
Domenico Cimini ◽  
James Hocking ◽  
Pauline Martinet ◽  
Stefan Kneifel

Abstract. Ground-based microwave radiometers (MWR) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward looking microwave sensors. In addition, the Tangent Linear, Adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e. the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22–60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (~ 0.5 K) at all channels used in this analysis. Brightness temperatures (TB) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and colocated ground-based MWR observations. Differences between simulated and measured TB are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV-gb have been compared with those calculated with the brute force technique and those from the line-by-line model ARTS. Jacobians are found to be almost identical, except for liquid water content Jacobians for which a 10 % difference between ARTS and RTTOV-gb at transparent channels around 450 hPa is attributed to differences in liquid water absorption models. Finally, RTTOV-gb has been applied as the forward model operator within a 1-Dimensional Variational (1D-Var) software tool in an Observing-System Simulation Experiment (OSSE). For both temperature and humidity profiles, the 1D-Var with RTTOV-gb improves the retrievals with respect to NWP model in the first few kilometers from the ground.


2020 ◽  
Vol 13 (6) ◽  
pp. 3235-3261
Author(s):  
Steven Albers ◽  
Stephen M. Saleeby ◽  
Sonia Kreidenweis ◽  
Qijing Bian ◽  
Peng Xian ◽  
...  

Abstract. Solar radiation is the ultimate source of energy flowing through the atmosphere; it fuels all atmospheric motions. The visible-wavelength range of solar radiation represents a significant contribution to the earth's energy budget, and visible light is a vital indicator for the composition and thermodynamic processes of the atmosphere from the smallest weather scales to the largest climate scales. The accurate and fast description of light propagation in the atmosphere and its lower-boundary environment is therefore of critical importance for the simulation and prediction of weather and climate. Simulated Weather Imagery (SWIm) is a new, fast, and physically based visible-wavelength three-dimensional radiative transfer model. Given the location and intensity of the sources of light (natural or artificial) and the composition (e.g., clear or turbid air with aerosols, liquid or ice clouds, precipitating rain, snow, and ice hydrometeors) of the atmosphere, it describes the propagation of light and produces visually and physically realistic hemispheric or 360∘ spherical panoramic color images of the atmosphere and the underlying terrain from any specified vantage point either on or above the earth's surface. Applications of SWIm include the visualization of atmospheric and land surface conditions simulated or forecast by numerical weather or climate analysis and prediction systems for either scientific or lay audiences. Simulated SWIm imagery can also be generated for and compared with observed camera images to (i) assess the fidelity and (ii) improve the performance of numerical atmospheric and land surface models. Through the use of the latter in a data assimilation scheme, it can also (iii) improve the estimate of the state of atmospheric and land surface initial conditions for situational awareness and numerical weather prediction forecast initialization purposes.


2005 ◽  
Vol 44 (6) ◽  
pp. 789-803 ◽  
Author(s):  
Jordi Badosa ◽  
Josep-Abel González ◽  
Josep Calbó ◽  
Michiel van Weele ◽  
Richard L. McKenzie

Abstract To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within ±0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented.


Sign in / Sign up

Export Citation Format

Share Document