Lightning in Wildfire Smoke Plumes Observed in Colorado during Summer 2012

2014 ◽  
Vol 142 (2) ◽  
pp. 489-507 ◽  
Author(s):  
Timothy J. Lang ◽  
Steven A. Rutledge ◽  
Brenda Dolan ◽  
Paul Krehbiel ◽  
William Rison ◽  
...  

Abstract Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.

2021 ◽  
Author(s):  
Julieta F. Juncosa Calahorrano ◽  
Vivienne H. Payne ◽  
Susan Kulawik ◽  
Bonne Ford ◽  
Frank Flocke ◽  
...  

Author(s):  
V.S. Chudnovsky ◽  
L.S. Chudnovsky ◽  
Yu.P. Vagin ◽  
A.N. Pleshanov ◽  
K.E. Tyupikov

Registration of the coordinates of lightning by their optical radiation has already been implemented on geostationary spacecraft in the wavelength range of 777.4 nm. However, the algorithms for processing the registered signals, as well as the volumes of information flows, have not yet been sufficiently studied. The choice of the sensor for the global registration of optical radiation of lightning on board a low-orbit spacecraft is substantiated. The prospects of using photodiodes in the difference-ranging method for determining coordinates are shown.The characteristics of lightning detection using matrices and LEDs have been studied. The prospects of using photodiodes in the differential-range-finding method for determining coordinates are shown. It is shown that the registration of optical lightning radiation on board the spacecraft by photodiodes provides the characteristics of detection and false alarms of a higher quality compared with the use of CCD matrices.


Atmosphere ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 317 ◽  
Author(s):  
Hengyi Liu ◽  
Shi Qiu ◽  
Wansheng Dong

VHF (Very High Frequency) lightning interferometers can locate and observe lightning discharges with a high time resolution. Especially the appearance of continuous interferometers makes the 2-D location of interferometers further improve in time resolution and completeness. However, there is uncertainty in the conclusion obtained by simply analyzing the 2-D locating information. Without the support of other 3-D total lightning locating networks, the 2-station interferometer becomes an option to obtain 3-D information. This paper introduces a 3-D lightning location method of a 2-station broadband interferometer, which uses the theodolite wind measurement method for reference, and gives the simulation results of the location accuracy. Finally, using the multi-baseline continuous 2-D locating method and the 3-D locating method, the locating results of one intra-cloud flash and the statistical results of the initiation heights of 61 cloud-to-ground flashes and 80 intra-cloud flashes are given. The results show that the two-station interferometer has high observation accuracy on both sides of the connection between the two sites. The locating accuracy will deteriorate as the distance between the radiation source and the two stations increases or the height decreases. The actual locating results are similar to those of the existing VHF TDOA (Time Difference of Arrival) lightning locating network.


2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Ana Rappold* ◽  
Alexandra Larsen ◽  
Brian Reich

2018 ◽  
Vol 619-620 ◽  
pp. 988-1002 ◽  
Author(s):  
Elisabeth Alonso-Blanco ◽  
Amaya Castro ◽  
Ana I. Calvo ◽  
Veronique Pont ◽  
Marc Mallet ◽  
...  

2019 ◽  
Vol 34 (1) ◽  
pp. 233-254 ◽  
Author(s):  
T. H. M. Stein ◽  
W. Keat ◽  
R. I. Maidment ◽  
S. Landman ◽  
E. Becker ◽  
...  

Abstract Since 2016, the South African Weather Service (SAWS) has been running convective-scale simulations to assist with forecast operations across southern Africa. These simulations are run with a tropical configuration of the Met Office Unified Model (UM), nested in the Met Office global model, but without data assimilation. For November 2016, convection-permitting simulations at 4.4- and 1.5-km grid lengths are compared against a simulation at 10-km grid length with convection parameterization (the current UM global atmosphere configuration) to identify the benefits of increasing model resolution for forecasting convection across southern Africa. The simulations are evaluated against satellite rainfall estimates, CloudSat vertical cloud profiles, and SAWS radar data. In line with previous studies using the UM, on a monthly time scale, the diurnal cycle of convection and the distribution of rainfall rates compare better against observations when convection-permitting model configurations are used. The SAWS radar network provides a three-dimensional composite of radar reflectivity for northeast South Africa at 6-min intervals, allowing the evaluation of the vertical development of precipitating clouds and of the timing of the onset of deep convection. Analysis of four case study days indicates that the 4.4-km simulations have a later onset of convection than the 1.5-km simulations, but there is no consistent bias of the simulations against the radar observations across the case studies.


Sign in / Sign up

Export Citation Format

Share Document