scholarly journals The Impact of Covariance Localization for Radar Data on EnKF Analyses of a Developing MCS: Observing System Simulation Experiments

2013 ◽  
Vol 141 (11) ◽  
pp. 3691-3709 ◽  
Author(s):  
Ryan A. Sobash ◽  
David J. Stensrud

Abstract Several observing system simulation experiments (OSSEs) were performed to assess the impact of covariance localization of radar data on ensemble Kalman filter (EnKF) analyses of a developing convective system. Simulated Weather Surveillance Radar-1988 Doppler (WSR-88D) observations were extracted from a truth simulation and assimilated into experiments with localization cutoff choices of 6, 12, and 18 km in the horizontal and 3, 6, and 12 km in the vertical. Overall, increasing the horizontal localization and decreasing the vertical localization produced analyses with the smallest RMSE for most of the state variables. The convective mode of the analyzed system had an impact on the localization results. During cell mergers, larger horizontal localization improved the results. Prior state correlations between the observations and state variables were used to construct reverse cumulative density functions (RCDFs) to identify the correlation length scales for various observation-state pairs. The OSSE with the smallest RMSE employed localization cutoff values that were similar to the horizontal and vertical length scales of the prior state correlations, especially for observation-state correlations above 0.6. Vertical correlations were restricted to state points closer to the observations than in the horizontal, as determined by the RCDFs. Further, the microphysical state variables were correlated with the reflectivity observations on smaller scales than the three-dimensional wind field and radial velocity observations. The ramifications of these findings on localization choices in convective-scale EnKF experiments that assimilate radar data are discussed.


2018 ◽  
Vol 146 (1) ◽  
pp. 175-198 ◽  
Author(s):  
Rong Kong ◽  
Ming Xue ◽  
Chengsi Liu

Abstract A hybrid ensemble–3DVar (En3DVar) system is developed and compared with 3DVar, EnKF, “deterministic forecast” EnKF (DfEnKF), and pure En3DVar for assimilating radar data through perfect-model observing system simulation experiments (OSSEs). DfEnKF uses a deterministic forecast as the background and is therefore parallel to pure En3DVar. Different results are found between DfEnKF and pure En3DVar: 1) the serial versus global nature and 2) the variational minimization versus direct filter updating nature of the two algorithms are identified as the main causes for the differences. For 3DVar (EnKF/DfEnKF and En3DVar), optimal decorrelation scales (localization radii) for static (ensemble) background error covariances are obtained and used in hybrid En3DVar. The sensitivity of hybrid En3DVar to covariance weights and ensemble size is examined. On average, when ensemble size is 20 or larger, a 5%–10% static covariance gives the best results, while for smaller ensembles, more static covariance is beneficial. Using an ensemble size of 40, EnKF and DfEnKF perform similarly, and both are better than pure and hybrid En3DVar overall. Using 5% static error covariance, hybrid En3DVar outperforms pure En3DVar for most state variables but underperforms for hydrometeor variables, and the improvement (degradation) is most notable for water vapor mixing ratio qυ (snow mixing ratio qs). Overall, EnKF/DfEnKF performs the best, 3DVar performs the worst, and static covariance only helps slightly via hybrid En3DVar.



2013 ◽  
Vol 141 (8) ◽  
pp. 2759-2777 ◽  
Author(s):  
Guoqing Ge ◽  
Jidong Gao ◽  
Ming Xue

Abstract This paper investigates the impacts of assimilating measurements of different state variables, which can be potentially available from various observational platforms, on the cycled analysis and short-range forecast of supercell thunderstorms by performing a set of observing system simulation experiments (OSSEs) using a storm-scale three-dimensional variational data assimilation (3DVAR) method. The control experiments assimilate measurements every 5 min for 90 min. It is found that the assimilation of horizontal wind can reconstruct the storm structure rather accurately. The assimilation of vertical velocity , potential temperature , or water vapor can partially rebuild the thermodynamic and precipitation fields but poorly retrieves the wind fields. The assimilation of rainwater mixing ratio can build up the precipitation fields together with a reasonable cold pool but is unable to properly recover the wind fields. Overall, data have the greatest impact, while have the second largest impact. The impact of is the smallest. The impact of assimilation frequency is examined by comparing results using 1-, 5-, or 10-min assimilation intervals. When is assimilated every 5 or 10 min, the analysis quality can be further improved by the incorporation of additional types of observations. When are assimilated every minute, the benefit from additional types of observations is negligible, except for . It is also found that for , , and measurements, more frequent assimilation leads to more accurate analyses. For and , a 1-min assimilation interval does not produce a better analysis than a 5-min interval.



2020 ◽  
Vol 35 (1) ◽  
pp. 51-66 ◽  
Author(s):  
L. Cucurull ◽  
M. J. Mueller

Abstract Observing system simulation experiments (OSSEs) were conducted to evaluate the potential impact of the six Global Navigation Satellite System (GNSS) radio occultation (RO) receiver satellites in equatorial orbit from the initially proposed Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, known as COSMIC-2A. Furthermore, the added value of the high-inclination component of the proposed mission was investigated by considering a few alternative architecture designs, including the originally proposed polar constellation of six satellites (COSMIC-2B), a constellation with a reduced number of RO receiving satellites, and a constellation of six satellites but with fewer observations in the lower troposphere. The 2015 year version of the operational three-dimensional ensemble–variational data assimilation system of the National Centers for Environment Prediction (NCEP) was used to run the OSSEs. Observations were simulated and assimilated using the same methodology and their errors assumed uncorrelated. The largest benefit from the assimilation of COSMIC-2A, with denser equatorial coverage, was to improve tropical winds, and its impact was found to be overall neutral in the extratropics. When soundings from the high-inclination orbit were assimilated in addition to COSMIC-2A, positive benefits were found globally, confirming that a high-inclination orbit constellation of RO receiving satellites is necessary to improve weather forecast skill globally. The largest impact from reducing COSMIC-2B from six to four satellites was to slightly degrade weather forecast skill in the Northern Hemisphere extratropics. The impact of degrading COSMIC-2B to the COSMIC level of accuracy, in terms of penetration into the lower troposphere, was mostly neutral.



2014 ◽  
Vol 142 (11) ◽  
pp. 4017-4035 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Jian-Luen Chiou ◽  
Wei-Hao Chen ◽  
Hsin-Yu Yu

Abstract This research combines an advanced multiple-Doppler radar synthesis technique with the thermodynamic retrieval method, originally proposed by Gal-Chen, and a moisture/temperature adjustment scheme, and formulates a sequential procedure. The focus is on applying this procedure to improve the model quantitative precipitation nowcasting (QPN) skill in the convective scale up to 3 hours. A series of (observing system simulation experiment) OSSE-type tests and a real case study are conducted to investigate the performance of this algorithm under different conditions. It is shown that by using the retrieved three-dimensional wind, thermodynamic, and microphysical parameters to reinitialize a fine-resolution numerical model, its QPN skill can be significantly improved. Since the Gal-Chen method requires the horizontal average properties of the weather system at each altitude, utilization of in situ radiosonde(s) to obtain this additional information for the retrieval is tested. When sounding data are not available, it is demonstrated that using the model results to replace the role played by observing devices is also a feasible choice. The moisture field is obtained through a simple, but effective, adjusting scheme and is found to be beneficial to the rainfall forecast within the first hour after the reinitialization of the model. Since this algorithm retrieves the unobserved state variables instantaneously from the wind measurements and directly uses them to reinitialize the model, fewer radar data and a shorter model spinup time are needed to correct the rainfall forecasts, in comparison with other data assimilation techniques such as four-dimensional variational data assimilation (4DVAR) or ensemble Kalman filter (EnKF) methods.



2020 ◽  
Vol 35 (4) ◽  
pp. 1345-1362 ◽  
Author(s):  
Paula Maldonado ◽  
Juan Ruiz ◽  
Celeste Saulo

AbstractSpecification of suitable initial conditions to accurately forecast high-impact weather events associated with intense thunderstorms still poses a significant challenge for convective-scale forecasting. Radar data assimilation has been showing encouraging results to produce an accurate estimate of the state of the atmosphere at the mesoscale, as it combines high-spatiotemporal-resolution observations with convection-permitting numerical weather prediction models. However, many open questions remain regarding the configuration of state-of-the-art data assimilation systems at the mesoscale and their potential impact upon short-range weather forecasts. In this work, several observing system simulation experiments of a mesoscale convective system were performed to assess the sensitivity of the local ensemble transform Kalman filter to both relaxation-to-prior spread (RTPS) inflation and horizontal localization of the error covariance matrix. Realistic large-scale forcing and model errors have been taken into account in the simulation of reflectivity and Doppler velocity observations. Overall, the most accurate analyses in terms of RMSE were produced with a relatively small horizontal localization cutoff radius (~3.6–7.3 km) and large RTPS inflation parameter (~0.9–0.95). Additionally, the impact of horizontal localization on short-range ensemble forecast was larger compared to inflation, almost doubling the lead times up to which the effect of using a more accurate state to initialize the forecast persisted.



2012 ◽  
Vol 140 (11) ◽  
pp. 3495-3506 ◽  
Author(s):  
Thibaut Montmerle

Abstract This study focuses on the impact of using specific background error covariances in precipitating areas in the Application of Research to Operations at Mesoscale (AROME-France) numerical weather prediction (NWP) system that considers reflectivities and radial velocities in its assimilation system. Such error covariances are deduced from the application of geographical masks on forecast differences generated from an ensemble assimilation of various precipitating cases. The retrieved forecast error covariances are then applied in an incremental three-dimensional variational data assimilation (3D-Var) specifically in rainy areas, in addition to the operational climatological background error covariances that are used elsewhere. Such heterogeneous formulation gives better balanced and more realistic analysis increments, as retrieved from the assimilation of radar data. For instance, midlevel humidification allows for the reinforcement of the low-level cooling and convergence, the warming in clouds, and high-level divergence. Smaller forecast error horizontal lengths explain the smaller-scale structures of the increments and render possible the increase of data densities in rainy areas. Larger error variances for the dynamical variables give more weight to wind observations such as radial winds. A reduction of the spinup is also shown and is positively correlated to the size of the area where rainy forecast error covariances are applied. Positive forecast scores on cumulated rain and on low-level temperature and humidity are finally displayed.





Author(s):  
L. CUCURULL ◽  
S. P. F. CASEY

AbstractAs global data assimilation systems continue to evolve, Observing System Simulation Experiments (OSSEs) need to be updated to accurately quantify the impact of proposed observing technologies in weather forecasting. Earlier OSSEs with radio occultation (RO) observations have been updated and the impact of the originally proposed Constellation Observing Satellites for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, with a high-inclination and low-inclination component, has been investigated by using the operational data assimilation system at NOAA and a 1-dimensional bending angle RO forward operator. It is found that the impact of the low-inclination component of the originally planned COSMIC-2 mission (now officially named COSMIC-2) has significantly increased as compared to earlier studies, and significant positive impact is now found globally in terms of mass and wind fields. These are encouraging results as COSMIC-2 was successfully launched in June 2019 and data have been recently released to operational weather centers. Earlier findings remain valid indicating that globally distributed RO observations are more important to improve weather prediction globally than a denser sampling of the tropical latitudes. Overall, the benefits reported here from assimilating RO soundings are much more significant than the impacts found in previous OSSEs. This is largely attributed to changes in the data assimilation and forecast system and less to the more advanced 1-dimensional forward operator chosen for the assimilation of RO observations.



2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Shibo Gao ◽  
Jinzhong Min

Using radar observations, the performances of the ensemble square root filter (EnSRF) and an indirect three-dimensional variational (3DVar) data assimilation method were compared for a mesoscale convective system (MCS) that occurred in the Front Range of the Rocky Mountains, Colorado (USA). The results showed that the root mean square innovations (RMSIs) of EnSRF were lower than 3DVar for radar reflectivity and radial velocity and that the spread of EnSRF was generally consistent with its RMSIs. EnSRF substantially improved the analysis of the MCS compared with an experiment without radar data assimilation, and it produced a slight but noticeable improvement over 3DVar in terms of both coverage and intensity. Forecast results initiated from the final analysis revealed that EnSRF generally produced the best prediction of the MCS, with improved quantitative reflectivity and precipitation forecast skills. EnSRF also demonstrated better performance than 3DVar in the prediction of neighborhood probability for reflectivity at thresholds of 20 and 35 dBZ, which better matched the observed radar reflectivity in terms of both shape and extension. Additionally, the humidity, temperature, and wind fields were also improved by EnSRF; the largest error reduction was found in the water vapor field near the surface and at upper levels.



2013 ◽  
Vol 2013 ◽  
pp. 1-18
Author(s):  
Edward Natenberg ◽  
Jidong Gao ◽  
Ming Xue ◽  
Frederick H. Carr

A three-dimensional variational (3DVAR) assimilation technique developed for a convective-scale NWP model—advanced regional prediction system (ARPS)—is used to analyze the 8 May 2003, Moore/Midwest City, Oklahoma tornadic supercell thunderstorm. Previous studies on this case used only one or two radars that are very close to this storm. However, three other radars observed the upper-level part of the storm. Because these three radars are located far away from the targeted storm, they were overlooked by previous studies. High-frequency intermittent 3DVAR analyses are performed using the data from five radars that together provide a more complete picture of this storm. The analyses capture a well-defined mesocyclone in the midlevels and the wind circulation associated with a hook-shaped echo. The analyses produced through this technique are used as initial conditions for a 40-minute storm-scale forecast. The impact of multiple radars on a short-term NWP forecast is most evident when compared to forecasts using data from only one and two radars. The use of all radars provides the best forecast in which a strong low-level mesocyclone develops and tracks in close proximity to the actual tornado damage path.



Sign in / Sign up

Export Citation Format

Share Document