Variational Assimilation of Radar Data and GLM Lightning-Derived Water Vapor for the Short-Term Forecasts of High-Impact Convective Events

2019 ◽  
Vol 147 (11) ◽  
pp. 4045-4069 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Yunheng Wang ◽  
Jidong Gao ◽  
Edward R. Mansell

Abstract The assimilation of water vapor mass mixing ratio derived from total lightning data from the Geostationary Lightning Mapper (GLM) within a three-dimensional variational (3DVAR) system is evaluated for the analysis and short-term forecast (≤6 h) of a high-impact convective event over the northern Great Plains in the United States. Building on recent work, the lightning data assimilation (LDA) method adjusts water vapor mass mixing ratio within a fixed layer depth above the lifted condensation level by assuming nearly water-saturated conditions at observed lightning locations. In this algorithm, the total water vapor mass added by the LDA is balanced by an equal removal outside observed lightning locations. Additional refinements were also devised to partially alleviate the seasonal and geographical dependence of the original scheme. To gauge the added value of lightning, radar data (radial velocity and reflectivity) were also assimilated with or without lightning. Although the method was evaluated in quasi–real time for several high-impact weather events throughout 2018, this work will focus on one specific, illustrative severe weather case wherein the control simulation—which did not assimilate any data—was eventually able to initiate and forecast the majority of the observed storms. Given a relatively reasonable forecast in the control experiment, the GLM and radar assimilation experiments were still able to improve the short-term forecast of accumulated rainfall and composite radar reflectivity further, as measured by neighborhood-based metrics. These results held whether the simulations made use of one single 3DVAR analysis or high-frequency (10 min) successive cycling over a 1-h period.

2020 ◽  
Vol 148 (3) ◽  
pp. 1005-1028 ◽  
Author(s):  
Junjun Hu ◽  
Alexandre O. Fierro ◽  
Yunheng Wang ◽  
Jidong Gao ◽  
Edward R. Mansell

Abstract The recent successful deployment of the Geostationary Lightning Mapper (GLM) on board the Geostationary Operational Environmental Satellite R series (GOES-16/17) provides nearly uniform spatiotemporal measurements of total lightning (intracloud plus cloud to ground) over the Americas and adjacent vast oceanic regions. This study evaluates the potential value of assimilating GLM-derived water vapor mixing ratio on short-term (≤6 h), cloud-scale (dx = 1.5 km) forecasts of five severe weather events over the Great Plains of the United States using a three-dimensional variational (3DVAR) data assimilation (DA) system. Toward a more systematic assimilation of real GLM data, this study conducted sensitivity tests aimed at evaluating the impact of the horizontal decorrelation length scale, DA cycling frequency, and the time window size for accumulating GLM lightning observations prior to the DA. Forecast statistics aggregated over all five cases suggested that an optimal forecast performance is obtained when lightning measurements are accumulated over a 10-min interval and GLM-derived water vapor mixing ratio values are assimilated every 15 min with a horizontal decorrelation length scale of 3 km. This suggested configuration for the GLM DA together with companion experiments (i) not assimilating any data, (ii) assimilating radar data only, and (iii) assimilating both GLM and radar data were evaluated for the same five cases. Overall, GLM data have shown potential to help improve the short-term (<3 h) forecast skill of composite reflectivity fields and individual storm tracks. While this result also held for accumulated rainfall, longer-term (≥3 h) forecasts were generally characterized by noteworthy wet biases.


2016 ◽  
Vol 144 (11) ◽  
pp. 4373-4393 ◽  
Author(s):  
Alexandre O. Fierro ◽  
Jidong Gao ◽  
Conrad L. Ziegler ◽  
Kristin M. Calhoun ◽  
Edward R. Mansell ◽  
...  

Abstract This work evaluates the performance of the assimilation of total lightning data within a three-dimensional variational (3DVAR) framework for the analysis and short-term forecast of the 24 May 2011 tornado outbreak using the Weather Research and Forecasting (WRF) Model at convection-allowing scales. Between the lifted condensation level and a fixed upper height, pseudo-observations for water vapor mass first are created based on either the flash extent densities derived from Oklahoma Lightning Mapping Array data or the lightning source densities derived from the Earth Networks pulse data, and then assimilated by the 3DVAR system. Assimilation of radar data with 3DVAR and a cloud analysis algorithm (RAD) also are performed as a baseline for comparison and in tandem with lightning to evaluate the added value of this lightning data assimilation (LDA) method. Given a scenario wherein the control experiment without radar or lightning data assimilation fails to accurately initiate and forecast the observed storms, the LDA and RAD yield comparable short-term forecast improvements. The RAD alone produces storms of similar strength to the observations during the first 30 min of forecast more rapidly than the LDA alone; however, the LDA is able to better depict individual supercellular features at 1-h forecast. When both the lightning and radar data are assimilated, the 30-min forecast showed noteworthy improvements over RAD in terms of the model’s ability to better resolve individual supercell structures and still maintained a 1-h forecast similar to that from the LDA. The results chiefly illustrate the potential value of assimilating total lightning data along with radar data.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
T. Egorova ◽  
E. Rozanov ◽  
A. V. Shapiro ◽  
W. Schmutz

We have applied chemistry-climate model (CCM) SOCOL to simulate the distribution of the temperature and gas species in the upper stratosphere and mesosphere. As an input for the simulation, we employ daily spectral solar UV irradiance measured by SUSIM instrument onboard UARS satellite in January 1992. We have carried out an ensemble of nine 1-month long simulations using slightly different initial states of the atmosphere. We have compared the obtained time evolution of the simulated species and temperature with available satellite measurements. The obtained results allowed us to define the areas where the nowcast and short-term forecast of the atmospheric species with CCM SOCOL could be successful.


2021 ◽  
Vol 4 ◽  
pp. 104-109
Author(s):  
S. S. Grozin ◽  
◽  
ZH.V. Ostrovskikh ◽  

The article deals with the problem of the emergence and functioning of financial pyramids based on the use of digital assets, using the example of the «Finico» project. The main performance indicators are analyzed, as well as the reasons that influenced the success of this project, its scale and duration of existence are characterized. Particular attention is paid to the ways of organizing and carrying out illegal financial activities with signs of financial pyramids, and some measures are proposed to counter it. A short-term forecast of an increase in the number of crimes committed using information, telecommunications and digital technologies in this area is given.


Sign in / Sign up

Export Citation Format

Share Document