scholarly journals Boundary Layer and Shallow Cumulus Clouds in a Medium-Range Forecast of a Large-Scale Weather System

2005 ◽  
Vol 133 (7) ◽  
pp. 1938-1960 ◽  
Author(s):  
Stéphane Bélair ◽  
Jocelyn Mailhot ◽  
Claude Girard ◽  
Paul Vaillancourt

Abstract The role and impact that boundary layer and shallow cumulus clouds have on the medium-range forecast of a large-scale weather system is discussed in this study. A mesoscale version of the Global Environmental Multiscale (GEM) atmospheric model is used to produce a 5-day numerical forecast of a midlatitude large-scale weather system that occurred over the Pacific Ocean during February 2003. In this version of GEM, four different schemes are used to represent (i) boundary layer clouds (including stratus, stratocumulus, and small cumulus clouds), (ii) shallow cumulus clouds (overshooting cumulus), (iii) deep convection, and (iv) nonconvective clouds. Two of these schemes, that is, the so-called MoisTKE and Kuo Transient schemes for boundary layer and overshooting cumulus clouds, respectively, have been recently introduced in GEM and are described in more detail. The results show that GEM, with this new cloud package, is able to represent the wide variety of clouds observed in association with the large-scale weather system. In particular, it is found that the Kuo Transient scheme is mostly responsible for the shallow/intermediate cumulus clouds in the rear portion of the large-scale system, whereas MoisTKE produces the low-level stratocumulus clouds ahead of the system. Several diagnostics for the rear portion of the system reveal that the role of MoisTKE is mainly to increase the vertical transport (diffusion) associated with the boundary layer clouds, while Kuo Transient is acting in a manner more consistent with convective stabilization. As a consequence, MoisTKE is not able to remove the low-level shallow cloud layer that is incorrectly produced by the GEM nonconvective condensation scheme. Kuo Transient, in contrast, led to a significant reduction of these nonconvective clouds, in better agreement with satellite observations. This improved representation of stratocumulus and cumulus clouds does not have a large impact on the overall sea level pressure patterns of the large-scale weather system. Precipitation in the rear portion of the system, however, is found to be smoother when MoisTKE is used, and significantly less when the Kuo Transient scheme is switched on.

2015 ◽  
Vol 72 (12) ◽  
pp. 4797-4820 ◽  
Author(s):  
David M. Zermeño-Díaz ◽  
Chidong Zhang ◽  
Pavlos Kollias ◽  
Heike Kalesse

Abstract Observations from the Atmospheric Radiation Measurement Program (ARM) site at Manus Island in the western Pacific and (re)analysis products are used to investigate moistening by shallow cumulus clouds and by the circulation in large-scale convective events. Large-scale convective events are defined as rainfall anomalies larger than one standard deviation for a minimum of three consecutive days over a 10° × 10° domain centered at Manus. These events are categorized into two groups: Madden–Julian oscillation (MJO) events, with eastward propagation, and non-MJO events, without propagation. Shallow cumulus clouds are identified as continuous time–height echoes from 1-min cloud radar observations with their tops below the freezing level and their bases within the boundary layer. Daily moistening tendencies of shallow clouds, estimated from differences between their mean liquid water content and precipitation over their presumed life spans, and those of physical processes and advection from (re)analysis products are compared with local moistening tendencies from soundings. Increases in low-level moisture before rainfall peaks of MJO and non-MJO events are evident in both observations and reanalyses. Before and after the rainfall peaks of these events, precipitating and nonprecipitating shallow clouds exist all the time, but their occurrence fluctuates randomly. Their contributions to moisture tendencies through evaporation of condensed water are evident. These clouds provide perpetual background moistening to the lower troposphere but do not cause the observed increase in low-level moisture leading to rainfall peaks. Such moisture increase is mainly caused by anomalous nonlinear zonal advection.


2010 ◽  
Vol 67 (7) ◽  
pp. 2212-2225 ◽  
Author(s):  
Jennifer K. Fletcher ◽  
Christopher S. Bretherton

Abstract High-resolution three-dimensional cloud resolving model simulations of deep cumulus convection under a wide range of large-scale forcings are used to evaluate a mass flux closure based on boundary layer convective inhibition (CIN) that has previously been applied in parameterizations of shallow cumulus convection. With minor modifications, it is also found to perform well for deep oceanic and continental cumulus convection, and it matches simulated cloud-base mass flux much better than a closure based only on the boundary layer convective velocity scale. CIN closure maintains an important feedback among cumulus base mass flux, compensating subsidence, and CIN that keeps the boundary layer top close to cloud base. For deep convection, the proposed CIN closure requires prediction of a boundary layer mean turbulent kinetic energy (TKE) and a horizontal moisture variance, both of which are strongly correlated with precipitation. For our cases, CIN closure predicts cloud-base mass flux in deep convective environments as well as the best possible bulk entraining CAPE closure, but unlike the latter, CIN closure also works well for shallow cumulus convection without retuning of parameters.


2020 ◽  
Vol 77 (4) ◽  
pp. 1353-1369 ◽  
Author(s):  
Vishnu Nair ◽  
Thijs Heus ◽  
Maarten van Reeuwijk

Abstract The dynamics of a subsiding shell at the edges of actively growing shallow cumulus clouds with updrafts is analyzed using direct numerical simulation. The actively growing clouds have a fixed in-cloud buoyancy and velocity. Turbulent mixing and evaporative cooling at the cloud edges generate a subsiding shell that grows with time. A self-similar regime is observed for first- and second-order moments when normalized with respective maximum values. Internal scales derived from integral properties of the flow problem are identified. A self-similarity analysis using these scales reveals that contrary to classical self-similar flows, the turbulent kinetic energy budget terms and velocity moments scale according to the buoyancy and not with the mean velocity. The shell thickness is observed to increase linearly with time. The buoyancy scale remains time invariant and is set by the initial cloud–environment thermodynamics. The shell accelerates ballistically with a magnitude set by the saturation value of the buoyancy of the cloud–environment mixture. In this regime, the shell is buoyancy driven and independent of the in-cloud velocity. Relations are obtained for predicting the shell thickness and minimum velocities by linking the internal scales with external flow parameters. The values thus calculated are consistent with the thickness and velocities observed in typical shallow cumulus clouds. The entrainment coefficient is a function of the initial state of the cloud and the environment, and is shown to be on the same order of magnitude as fractional entrainment rates calculated for large-scale models.


2016 ◽  
Vol 16 (17) ◽  
pp. 11395-11413 ◽  
Author(s):  
Eunsil Jung ◽  
Bruce A. Albrecht ◽  
Armin Sorooshian ◽  
Paquita Zuidema ◽  
Haflidi H. Jonsson

Abstract. Precipitation tends to decrease as aerosol concentration increases in warm marine boundary layer clouds at fixed liquid water path (LWP). The quantitative nature of this relationship is captured using the precipitation susceptibility (So) metric. Previously published works disagree on the qualitative behavior of So in marine low clouds: So decreases monotonically with increasing LWP or cloud depth (H) in stratocumulus clouds (Sc), while it increases and then decreases in shallow cumulus clouds (Cu). This study uses airborne measurements from four field campaigns on Cu and Sc with similar instrument packages and flight maneuvers to examine if and why So behavior varies as a function of cloud type. The findings show that So increases with H and then decreases in both Sc and Cu. Possible reasons for why these results differ from those in previous studies of Sc are discussed.


2019 ◽  
Vol 865 ◽  
pp. 681-719
Author(s):  
Catherine A. Vreugdenhil ◽  
Bishakhdatta Gayen ◽  
Ross W. Griffiths

Direct numerical simulations are used to investigate the nature of fully resolved small-scale convection and its role in large-scale circulation in a rotating $f$-plane rectangular basin with imposed surface temperature difference. The large-scale circulation has a horizontal geostrophic component and a deep vertical overturning. This paper focuses on convective circulation with no wind stress, and buoyancy forcing sufficiently strong to ensure turbulent convection within the thermal boundary layer (horizontal Rayleigh numbers $Ra\approx 10^{12}{-}10^{13}$). The dynamics are found to depend on the value of a convective Rossby number, $Ro_{\unicode[STIX]{x0394}T}$, which represents the strength of buoyancy forcing relative to Coriolis forces. Vertical convection shifts from a mean endwall plume under weak rotation ($Ro_{\unicode[STIX]{x0394}T}>10^{-1}$) to ‘open ocean’ chimney convection plus mean vertical plumes at the side boundaries under strong rotation ($Ro_{\unicode[STIX]{x0394}T}<10^{-1}$). The overall heat throughput, horizontal gyre transport and zonally integrated overturning transport are then consistent with scaling predictions for flow constrained by thermal wind balance in the thermal boundary layer coupled to vertical advection–diffusion balance in the boundary layer. For small Rossby numbers relevant to circulation in an ocean basin, vertical heat transport from the surface layer into the deep interior occurs mostly in ‘open ocean’ chimney convection while most vertical mass transport is against the side boundaries. Both heat throughput and the mean circulation (in geostrophic gyres, boundary currents and overturning) are reduced by geostrophic constraints.


2009 ◽  
Vol 137 (12) ◽  
pp. 4171-4187 ◽  
Author(s):  
Hamish A. Ramsay ◽  
Lance M. Leslie ◽  
Jeffrey D. Kepert

Abstract Advances in observations, theory, and modeling have revealed that inner-core asymmetries are a common feature of tropical cyclones (TCs). In this study, the inner-core asymmetries of a severe Southern Hemisphere tropical cyclone, TC Larry (2006), are investigated using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) and the Kepert–Wang boundary layer model. The MM5-simulated TC exhibited significant asymmetries in the inner-core region, including rainfall distribution, surface convergence, and low-level vertical motion. The near-core environment was characterized by very low environmental vertical shear and consequently the TC vortex had almost no vertical tilt. It was found that, prior to landfall, the rainfall asymmetry was very pronounced with precipitation maxima consistently to the right of the westward direction of motion. Persistent maxima in low-level convergence and vertical motion formed ahead of the translating TC, resulting in deep convection and associated hydrometeor maxima at about 500 hPa. The asymmetry in frictional convergence was mainly due to the storm motion at the eyewall, but was dominated by the proximity to land at larger radii. The displacement of about 30°–120° of azimuth between the surface and midlevel hydrometeor maxima is explained by the rapid cyclonic advection of hydrometeors by the tangential winds in the TC core. These results for TC Larry support earlier studies that show that frictional convergence in the boundary layer can play a significant role in determining the asymmetrical structures, particularly when the environmental vertical shear is weak or absent.


2005 ◽  
Vol 62 (9) ◽  
pp. 3034-3050 ◽  
Author(s):  
R. Wood

Abstract This is the second of two observational papers examining drizzle in stratiform boundary layer clouds. Part I details the vertical and horizontal structure of cloud and drizzle parameters, including some bulk microphysical variables. In this paper, the focus is on the in situ size-resolved microphysical measurements, particularly of drizzle drops (r &gt; 20 μm). Layer-averaged size distributions of drizzle drops within cloud are shown to be well represented using either a truncated exponential or a truncated lognormal size distribution. The size-resolved microphysical measurements are used to estimate autoconversion and accretion rates by integration of the stochastic collection equation (SCE). These rates are compared with a number of commonly used bulk parameterizations of warm rain formation. While parameterized accretion rates agree well with those derived from the SCE initialized with observed spectra, the autoconversion rates seriously disagree in some cases. These disagreements need to be addressed in order to bolster confidence in large-scale numerical model predictions of the aerosol second indirect effect. Cloud droplet coalescence removal rates and mass and number fall rate relationships used in the bulk microphysical schemes are also compared, revealing some potentially important discrepancies. The relative roles of autoconversion and accretion are estimated by examination of composite profiles from the 12 flights. Autoconversion, although necessary for the production of drizzle drops, is much less important than accretion throughout the lower 80% of the cloud layer in terms of the production of drizzle liquid water. The SCE calculations indicate that the autoconversion rate depends strongly upon the cloud droplet concentration Nd such that a doubling of Nd would lead to a reduction in autoconversion rate of between 2 and 4. Radar reflectivity–precipitation rate (Z–R) relationships suitable for radar use are derived and are shown to be significantly biased in some cases by the undersampling of large (r &gt; 200 μm) drops with the 2D-C probe. A correction based upon the extrapolation to larger sizes using the exponential size distribution changes the Z–R relationship, leading to the conclusion that consideration should be given to sampling issues when examining higher moments of the drop size distribution in drizzling stratiform boundary layer clouds.


2005 ◽  
Vol 18 (7) ◽  
pp. 934-951 ◽  
Author(s):  
Yuqing Wang ◽  
Shang-Ping Xie ◽  
Bin Wang ◽  
Haiming Xu

Abstract A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary layer stratocumulus clouds to the south. In a sensitivity experiment with the radiative effect of liquid clouds south of the equator over the eastern Pacific artificially removed, boundary layer clouds south of the equator almost disappear and precipitation in the ITCZ is reduced by 15%–20%, indicating that the stratocumulus clouds over the southeast Pacific have both local and cross-equatorial effects. Examination of the differences between the control and sensitivity experiments indicates that clouds exert a net diabatic cooling in the inversion layer. In response to this cloud-induced cooling, an in situ anomalous high pressure system develops in the boundary layer and an anomalous shallow meridional circulation develops in the lower troposphere over the equatorial eastern Pacific. At the lower branch of this shallow circulation, anomalous boundary layer southerlies blow from the boundary layer high toward the northern ITCZ where the air ascends. An anomalous returning flow (northerly) just above the cloud layer closes the shallow circulation. This low-level anomalous shallow circulation enhances the subsidence over the southeast Pacific above the cloud layer, helping to maintain boundary layer clouds and temperature inversion there. Meanwhile, the strengthened cross-equatorial flow near the surface enhances moisture convergence and convection in the ITCZ north of the equator. This in turn strengthens the local, deep Hadley circulation and hence the large-scale subsidence and boundary layer clouds over the southeast Pacific. This positive feedback therefore enhances the interhemispheric climate asymmetry over the tropical eastern Pacific.


Sign in / Sign up

Export Citation Format

Share Document