scholarly journals The Retrieval of Asymmetric Tropical Cyclone Structures Using Doppler Radar Simulations and Observations with the Extended GBVTD Technique

2006 ◽  
Vol 134 (4) ◽  
pp. 1140-1160 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Tai-Chi Chen Wang ◽  
Wen-Chau Lee ◽  
Ya-Ju Chang

Abstract The ground-based velocity track display (GBVTD) technique is extended to two Doppler radars to retrieve the structure of a tropical cyclone’s (TC’s) circulation. With this extension, it is found that the asymmetric part of the TC radial wind component can be derived up to its angular wavenumber-1 structure, and the accuracy of the retrieved TC tangential wind component can be further improved. Although two radar systems are used, a comparison with the traditional dual-Doppler synthesis indicates that this extended GBVTD (EGBVTD) approach is able to estimate more of the TC circulation when there are missing data. Previous research along with this study reveals that the existence of strong asymmetric radial flows can degrade the quality of the GBVTD-derived wind fields. When a TC is observed by one radar, it is suggested that the GBVTD method be applied to TCs over a flat surface (e.g., the ocean) where the assumption of relatively smaller asymmetric radial winds than asymmetric tangential winds is more likely to be true. However, when a TC is observed by two radar systems, especially when the topographic effects are expected to be significant, the EGBVTD rather than the traditional dual-Doppler synthesis should be used. The feasibility of the proposed EGBVTD method is demonstrated by applying it to an idealized TC circulation model as well as a real case study. Finally, the possibility of combining EGBVTD with other observational instruments, such as dropsonde or wind profilers, to recover the asymmetric TC radial flow structures with even higher wavenumbers is discussed.

2018 ◽  
Vol 146 (9) ◽  
pp. 2799-2817 ◽  
Author(s):  
Udai Shimada ◽  
Takeshi Horinouchi

Abstract Strong vertical wind shear produces asymmetries in the eyewall structure of a tropical cyclone (TC) and is generally a hostile environment for TC intensification. Typhoon Noul (2015), however, reintensified and formed a closed eyewall despite 200–850-hPa vertical shear in excess of 11 m s−1. Noul’s reintensification and eyewall formation in strong shear were examined by using Doppler radar and surface observations. The evolution of the azimuthal-mean structure showed that the tangential wind at 2-km altitude increased from 30 to 45 m s−1 in only 5 h. During the first half of the reintensification, the azimuthal-mean inflow penetrated into the ~40-km radius, well inside the radius of maximum wind (RMW), at least below 4-km altitude, and reflectivity inside the RMW increased. As for the asymmetric evolution, vigorous convection, dominated by an azimuthal wavenumber-1 asymmetry, occurred in the downshear-left quadrant when shear started to increase and then moved upshear. A mesovortex formed inside the convective asymmetry on the upshear side. The direction of vortex tilt between the 1- and 5-km altitudes rotated cyclonically from the downshear-left to the upshear-right quadrant as the vortex was vertically aligned. In conjunction with the alignment, the amplitude of the wavenumber-1 convective asymmetry decreased and a closed eyewall formed. These features are consistent with the theory that a vortex can be vertically aligned through upshear precession. The analysis results suggest that the vortex tilt, vigorous convection, and subsequent intensification were triggered by the increase in shear in a convectively favorable environment.


1994 ◽  
Vol 12 (8) ◽  
pp. 691-710 ◽  
Author(s):  
J. Nash

Abstract. Methods of upper wind measurements used in operational meteorology have been reviewed to provide guidance to those developing wind profiler radar systems. The main limitations of the various methods of tracking weather balloons are identified using results from the WMO radiosonde comparisons and additional tests in the United Kingdom. Costs associated with operational balloon measurements are reviewed. The sampling and quality of operational aircraft wind observations are illustrated with examples from the ASDAR system. Measurement errors in horizontal winds are quantified wherever possible. When tracking equipment is functioning correctly, random errors in southerly and westerly wind component measurements from aircraft and weather balloons are usually in the range 0.5-2 m s-1.


2013 ◽  
Vol 30 (6) ◽  
pp. 1055-1071 ◽  
Author(s):  
Sylvie Lorsolo ◽  
John Gamache ◽  
Altug Aksoy

Abstract The Hurricane Research Division Doppler radar analysis software provides three-dimensional analyses of the three wind components in tropical cyclones. Although this software has been used for over a decade, there has never been a complete and in-depth evaluation of the resulting analyses. The goal here is to provide an evaluation that will permit the best use of the analyses, but also to improve the software. To evaluate the software, analyses are produced from simulated radar data acquired from an output of a Hurricane Weather Research and Forecasting (HWRF) model nature run and are compared against the model “truth” wind fields. Comparisons of the three components of the wind show that the software provides analyses of good quality. The tangential wind is best retrieved, exhibiting an overall small mean error of 0.5 m s−1 at most levels and a root-mean-square error less than 2 m s−1. The retrieval of the radial wind is also quite accurate, exhibiting comparable errors, although the accuracy of the tangential wind is generally better. Some degradation of the retrieval quality is observed at higher altitude, mainly due to sparser distribution of data in the model. The vertical component of the wind appears to be the most challenging to retrieve, but the software still provides acceptable results. The tropical cyclone mean azimuthal structure and wavenumber structure are found to be very well captured. Sources of errors inherent to airborne Doppler measurements and the effects of some of the simplifications used in the simulation methodology are also discussed.


2019 ◽  
Vol 11 (3) ◽  
pp. 685-702 ◽  
Author(s):  
Morteza Nikakhtar ◽  
Seyedeh Hoda Rahmati ◽  
Ali Reza Massah Bavani

Abstract In recent decades, climate change has influenced the quantity and quality of water resources, affecting water supply for various demands. In this case study, the effects of climate change on the quality of the Ardak River in the northeast of Iran are discussed. The Qual2kW model was used to simulate water quality parameters, by sampling dissolved oxygen (DO), pH, chemical oxygen demand (COD), and NO3. The rainfall-streamflow model IHACRES was used for simulating monthly streamflow. Monthly general circulation model (GCM) temperature and rainfall data from representative concentration pathways (RCP) RCP2.6 and RCP8.5 were downloaded for 1986 to 2005 and 2020 to 2039. The previously verified model LARS-WG was used to predict future temperatures and rainfall. By importing this data into IHACRES, stream flows were simulated, enabling Qual2kW to predict future effects on water quality. Although changes in temperature of 0.5 to 1.2 °C were predicted, maximum changes in temperature and rainfall will occur in winter and summer in series. Therefore, water quality was predicted to decrease only on the Abghad branch, due to increased temperature and lower flow rates. The highest percentage variations in DO and NO3 are −12.19 and 31.25 in RCP8.5 and in COD and PH, −35.4 and 0.29 in RCP2.6.


2018 ◽  
Vol 75 (1) ◽  
pp. 143-162 ◽  
Author(s):  
Udai Shimada ◽  
Masahiro Sawada ◽  
Hiroyuki Yamada

A ground-based Doppler radar observed the rapid intensification (RI) of Typhoon Goni (2015) for 24 h immediately after it completed an eyewall replacement cycle. Goni’s RI processes were examined by using radar reflectivity and wind fields retrieved by the ground-based velocity track display (GBVTD) technique. The maximum wind at 2-km altitude increased by 30 m s−1 during the first 6 h of RI, and it further increased by 20 m s−1 during the subsequent 12 h. Around the onset of RI, relatively strong outflow (>2 m s−1) was present both inside and outside the radius of maximum wind (RMW) above the boundary layer (BL), suggesting the existence of supergradient flow in and just above the BL. Despite this outflow, angular momentum increased inside the RMW. The low-level RMW contracted rapidly from 50 to 33 km, causing the RMW to slope greatly outward with height. The radius of maximum reflectivity was a few kilometers inside the RMW. A budget analysis of absolute angular momentum showed that the outflow contributed to the contraction of the tangential wind field. During RI, eyewall convection was enhanced, and a well-defined eye appeared. The low-level outflow changed into inflow immediately outside the RMW. Then the tangential wind field and high inertial stability region expanded radially outward, followed by the formation of an outer reflectivity maximum at twice the RMW. The contraction speed of the low-level RMW slowed down.


2008 ◽  
Vol 136 (3) ◽  
pp. 995-1012 ◽  
Author(s):  
Ben Jong-Dao Jou ◽  
Wen-Chau Lee ◽  
Su-Ping Liu ◽  
Yu-Cheng Kao

Abstract The primary circulation of atmospheric vortices, such as tropical cyclones and tornadoes, can be estimated from single-Doppler radar observations using the ground-based velocity track display (GBVTD) algorithm. The GBVTD algorithm has limitations in the following four areas: 1) distortion in the retrieved asymmetric wind fields, 2) a limited analysis domain, 3) the inability to resolve the cross-beam component of the mean wind, and 4) the inability to separate the asymmetric tangential and radial winds. This paper presents the generalized velocity track display (GVTD) algorithm, which eliminates the first two limitations inherent in the GBVTD technique and demonstrates the possibility of subjectively estimating the mean wind vector when its signature is visible beyond the influence of the vortex circulation. In this new paradigm, the GVTD algorithm fits the atmospheric vortex circulation to a new variable VdD/RT in a linear azimuth angle (θ′), rather than the Doppler velocity Vd in a nonlinear angle (ψ), which is used in GBVTD. Key vortex kinematic structures (e.g., mean wind, axisymmetric tangential wind, etc.) in the VdD/RT space simplify the interpretation of the radar signature and eliminate the geometric distortion inherent in the Vd display. This is a significant improvement in diagnosing vortex structures in both operations and research. The advantages of using VdD/RT are illustrated using analytical atmospheric vortices, and the properties are compared with GBVTD. The characteristics of the VdD/RT display of Typhoon Gladys (1994) can be approximated by a constant mean wind plus an axisymmetric vortex.


2011 ◽  
Vol 139 (1) ◽  
pp. 153-174 ◽  
Author(s):  
Shirley T. Murillo ◽  
Wen-Chau Lee ◽  
Michael M. Bell ◽  
Gary M. Barnes ◽  
Frank D. Marks ◽  
...  

Abstract A plausible primary circulation and circulation center of a tropical cyclone (TC) can be deduced from a coastal Doppler radar using the ground-based velocity track display (GBVTD) technique and the GBVTD-simplex algorithm. The quality of the retrieved primary circulation is highly sensitive to the accuracy of the circulation center that can only be estimated from the degree of scattering of all possible centers obtained in GBVTD-simplex analyses from a single radar in real TCs. This study extends previous work to examine the uncertainties in the GBVTD-simplex-derived circulation centers and the GBVTD-derived primary circulations in Hurricane Danny (1997) sampled simultaneously from two Doppler radars [Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) in Mobile, Alabama, and Slidell, Louisiana] for 5 h. It is found that the mean difference between the individually computed GBVTD-simplex-derived centers is 2.13 km, similar to the estimates in previous studies. This value can be improved to 1.59 km by imposing time continuity in the radius of maximum wind, maximum mean tangential wind, and the center position in successive volumes. These additional physical criteria, not considered in previous work, stabilized the GBVTD-simplex algorithm and paved the way for automating the center finding and wind retrieval procedures in the future. Using the improved set of centers, Danny’s axisymmetric tangential wind structures retrieved from each radar showed general agreement with systematic differences (up to 6 m s−1) in certain periods. The consistency in the wavenumber-1 tangential winds was not as good as their axisymmetric counterparts. It is suspected that the systematic differences in the axisymmetric tangential winds were caused by the unresolved wavenumber-2 sine components rather than from the relatively small cross-beam mean wind components in Danny.


2013 ◽  
Vol 141 (9) ◽  
pp. 3102-3115 ◽  
Author(s):  
Corey K. Potvin

Abstract Vortex detection algorithms are required for both research and operational applications in which data volume precludes timely subjective examination of model or analysis fields. Unfortunately, objective detection of convective vortices is often hindered by the strength and complexity of the flow in which they are embedded. To address this problem, a variational vortex-fitting algorithm previously developed to detect and characterize vortices observed by Doppler radar has been modified to operate on gridded horizontal wind data. The latter are fit to a simple analytical model of a vortex and its proximate environment, allowing the retrieval of important vortex characteristics. This permits the development of detection criteria tied directly to vortex properties (e.g., maximum tangential wind), rather than to more general kinematical properties that may poorly represent the vortex itself (e.g., vertical vorticity) when the background flow is strongly sheared. Thus, the vortex characteristic estimates provided by the technique may permit more effective detection criteria while providing useful information about vortex size, intensity, and trends therein. In tests with two simulated supercells, the technique proficiently detects and characterizes vortices, even in the presence of complex flow. Sensitivity tests suggest the algorithm would work well for a variety of vortex sizes without additional tuning. Possible applications of the technique include investigating relationships between mesocyclone and tornado characteristics, and detecting tornadoes, mesocyclones, and mesovortices in real-time ensemble forecasts.


2013 ◽  
Vol 70 (4) ◽  
pp. 1160-1171 ◽  
Author(s):  
David S. Nolan

Abstract A number of studies in recent years have used wind fields derived from portable Doppler radars in combination with the ground-based velocity track display (GBVTD) technique to diagnose the primary (tangential) and secondary (radial and vertical) circulations in tornadoes. These analyses indicate very strong vertical motions in the vortex core, in some cases with updrafts and downdrafts exceeding 100 m s−1. In addition, many of the analyses indicate strong radial outflow at low levels and in the vicinity of the low-level tangential wind maximum. This paper shows that strong outward motion at this location cannot be consistent with a tornado circulation that lasts more than a few minutes. In addition, using data from numerical simulations as truth, it is shown that using observed radial velocities to diagnose vertical velocities greatly overestimates the intensity of downward motion in the core for two reasons: neglect of the mass flux into the core through the swirling boundary layer, and the likely positive bias in low-level radial velocities due to the centrifuging of debris. Possible methods for accounting for these errors are briefly discussed.


2020 ◽  
Vol 29 (4) ◽  
pp. 685-690
Author(s):  
C. S. Vanaja ◽  
Miriam Soni Abigail

Purpose Misophonia is a sound tolerance disorder condition in certain sounds that trigger intense emotional or physiological responses. While some persons may experience misophonia, a few patients suffer from misophonia. However, there is a dearth of literature on audiological assessment and management of persons with misophonia. The purpose of this report is to discuss the assessment of misophonia and highlight the management option that helped a patient with misophonia. Method A case study of a 26-year-old woman with the complaint of decreased tolerance to specific sounds affecting quality of life is reported. Audiological assessment differentiated misophonia from hyperacusis. Management included retraining counseling as well as desensitization and habituation therapy based on the principles described by P. J. Jastreboff and Jastreboff (2014). A misophonia questionnaire was administered at regular intervals to monitor the effectiveness of therapy. Results A detailed case history and audiological evaluations including pure-tone audiogram and Johnson Hyperacusis Index revealed the presence of misophonia. The patient benefitted from intervention, and the scores of the misophonia questionnaire indicated a decrease in the severity of the problem. Conclusions It is important to differentially diagnose misophonia and hyperacusis in persons with sound tolerance disorders. Retraining counseling as well as desensitization and habituation therapy can help patients who suffer from misophonia.


Sign in / Sign up

Export Citation Format

Share Document