scholarly journals Can Lagrangian Extrapolation of Radar Fields Be Used for Precipitation Nowcasting over Complex Alpine Orography?

2012 ◽  
Vol 27 (1) ◽  
pp. 28-49 ◽  
Author(s):  
Pradeep V. Mandapaka ◽  
Urs Germann ◽  
Luca Panziera ◽  
Alessandro Hering

Abstract In this study, a Lagrangian radar echo extrapolation scheme (MAPLE) was tested for use in very short-term forecasting of precipitation over a complex orographic region. The high-resolution forecasts from MAPLE for lead times of 5 min–5 h are evaluated against the radar observations for 20 summer rainfall events by employing a series of categorical, continuous, and neighborhood evaluation techniques. The verification results are then compared with those from Eulerian persistence and high-resolution numerical weather prediction model [the Consortium for Small-scale Modeling model (COSMO2)] forecasts. The forecasts from the MAPLE model clearly outperformed Eulerian persistence forecasts for all the lead times, and had better skill compared to COSMO2 up to lead time of 3 h on average. The results also showed that the predictability achieved from the MAPLE model depends on the spatial structure of the precipitation patterns. This study is a first implementation of the MAPLE model over a complex Alpine region. In addition to comprehensive evaluation of precipitation forecast products, some open questions related to the nowcasting of rainfall over a complex terrain are discussed.

2008 ◽  
Vol 2 (1) ◽  
pp. 133-138 ◽  
Author(s):  
M. Milelli ◽  
E. Oberto ◽  
A. Parodi

Abstract. This study is embedded into a wider project named "Tackle deficiencies in Quantitative Precipitation Forecast (QPF)'' in the framework of the COSMO (COnsortium for Small-scale MOdelling) community. In fact QPF is an important purpose of a numerical weather prediction model, for forecasters and customers. Unfortunately, precipitation is also a very difficult parameter to forecast quantitatively. This priority project aims at looking into the COSMO Model deficiencies concerning QPF by running different numerical simulations of various events not correctly predicted by the model. In particular, this work refers to a severe event (moist convection) happened in Piemonte region during summer 2006. On one side the results suggest that details in orography representation have a strong influence on accuracy of QPF. On the other side COSMO Model exhibits a poor sensitivity on changes in numerical and physical settings when measured in terms of QPF improvements. The conclusions, although not too general, give some hint towards the behaviour of the COSMO Model in a typical convective situation.


2021 ◽  
Author(s):  
Adele Young ◽  
Biswa Bhattacharya ◽  
Emma Daniels ◽  
Chris Zevenbergen

<p>High-resolution precipitation models are essential to forecast urban pluvial floods. Global Numerical Weather Prediction Models (NWPs) are considered too coarse to accurately forecast flooding at the city scale. High-resolution radar nowcasting can be either unavailable or insufficient to forecast at the required lead-times.  Downscaling models are used to increase the resolution and extend forecast by several days when initialised with global NWPs. However, resolving weather processes at smaller spatial scales and sub-daily temporal resolutions has its challenges and does not necessarily result in more accurate forecast but instead only increase the computational requirements. Additionally, in ungauged regions, forecast verification is a challenge as in-situ measurements and radar estimates remain scarce or non-existent. This research evaluates the ability of a dynamically downscaled WRF model to capture the spatial and temporal variability of rainfall suitable for an urban drainage flood forecast model and evaluated against IMERG Global Precipitation Model (GPM) Satellite Precipitation Products (SPPs).<br> A WRF model was set-up with one-way nesting, three nested domains at horizontal grid resolutions 10km, 3.33km and 1km, a 1hourly temporal output, a spin-up time of 12 hours and evaluated at different lead times up to 48 hrs. The analysis was performed for three (3)  winter frontal systems during the period 2015-2019 in the highly urbanised coastal Mediterranean city of Alexandria in Egypt which experiences floods from extreme precipitation. The Global Forecast System (GFS), and European Centre for Medium Range (ECMWF) forecast were used as initial and lateral boundary conditions. <br>Initial results indicate the WRF models could capture extreme rainfall for all events. There is some agreement with the IMERG data and the model correctly forecasted a decrease in rainfall as the systems transition from coastal to inland areas. In general, GFS and ECMWF initialised WRF models overestimated rainfall estimates compared to IMERG data. Differences in GFS and ECMWF initialised models (multi-model approach) highlight the sensitivity of models to initial and boundary conditions and emphasises the need for post-processing and data assimilation when possible to generate accurate small-scale features. A study such as this provides knowledge for understanding, future applications and limitations of using Quantitative Precipitation Forecasts (QPFs) in urban drainage models. Additionally, the potential use of IMERG GPM to verify spatial and temporal variability of forecast in ungauged and data-scarce regions. Future analysis will evaluate the skill of ensembles precipitation systems in characterising forecast uncertainty in such applications. </p>


Időjárás ◽  
2021 ◽  
Vol 125 (4) ◽  
pp. 571-607
Author(s):  
André Simon ◽  
Martin Belluš ◽  
Katarína Čatlošová ◽  
Mária Derková ◽  
Martin Dian ◽  
...  

The paper presented is dedicated to the evaluation of the influence of various improvements to the numerical weather prediction (NWP) systems exploited at the Slovak Hydrometeorological Institute (SHMÚ). The impact was illustrated in a case study with multicell thunderstorms and the results were confronted with the reference analyses from the INCA nowcasting system, regional radar reflectivity data, and METEOSAT satellite imagery. The convective cells evolution was diagnosed in non-hydrostatic dynamics experiments to study weak mesoscale vortices and updrafts. The growth of simulated clouds and evolution of the temperature at their top were compared with the brightness temperature analyzed from satellite imagery. The results obtained indicated the potential for modeling and diagnostics of small-scale structures within the convective cloudiness, which could be related to severe weather. Furthermore, the non-hydrostatic dynamics experiments related to the stability and performance improvement of the time scheme led to the formulation of a new approach to linear operator definition for semi-implicit scheme (in text referred as NHHY). We demonstrate that the execution efficiency has improved by more than 20%. The exploitation of several high resolution measurement types in data assimilation contributed to more precise position of predicted patterns and precipitation representation in the case study. The non-hydrostatic dynamics provided more detailed structures. On the other hand, the potential of a single deterministic forecast of prefrontal heavy precipitation was not as high as provided by the ensemble system. The prediction of a regional ensemble system A-LAEF (ALARO Limited Area Ensemble Forecast) enhanced the localization of precipitation patterns. Though, this was rather due to the simulation of uncertainty in the initial conditions and also because of the stochastic perturbation of physics tendencies. The various physical parameterization setups of A-LAEF members did not exhibit a systematic effect on precipitation forecast in the evaluated case. Moreover, the ensemble system allowed an estimation of uncertainty in a rapidly developing severe weather case, which was high even at very short range.


2016 ◽  
Vol 144 (4) ◽  
pp. 1273-1298 ◽  
Author(s):  
Yunji Zhang ◽  
Fuqing Zhang ◽  
David J. Stensrud ◽  
Zhiyong Meng

Abstract Using a high-resolution convection-allowing numerical weather prediction model, this study seeks to explore the intrinsic predictability of the severe tornadic thunderstorm event on 20 May 2013 in Oklahoma from its preinitiation environment to initiation, upscale organization, and interaction with other convective storms. This is accomplished through ensemble forecasts perturbed with minute initial condition uncertainties that were beyond detection capabilities of any current observational platforms. It was found that these small perturbations, too small to modify the initial mesoscale environmental instability and moisture fields, will be propagated and evolved via turbulence within the PBL and rapidly amplified in moist convective processes through positive feedbacks associated with updrafts, phase transitions of water species, and cold pools, thus greatly affecting the appearance, organization, and development of thunderstorms. The forecast errors remain nearly unchanged even when the initial perturbations (errors) were reduced by as much as 90%, which strongly suggests an inherently limited predictability for this thunderstorm event for lead times as short as 3–6 h. Further scale decomposition reveals rapid error growth and saturation in meso-γ scales (regardless of the magnitude of initial errors) and subsequent upscale growth into meso-β scales.


Author(s):  
Matthew T. Bray ◽  
David D. Turner ◽  
Gijs de Boer

AbstractDespite a need for accurate weather forecasts for societal and economic interests in the U.S. Arctic, thorough evaluations of operational numerical weather prediction in the region have been limited. In particular, the Rapid Refresh Model (RAP), which plays a key role in short-term forecasting and decision making, has seen very limited assessment in northern Alaska, with most evaluation efforts focused on lower latitudes. In the present study, we verify forecasts from version 4 of the RAP against radiosonde, surface meteorological, and radiative flux observations from two Arctic sites on the northern Alaskan coastline, with a focus on boundary-layer thermodynamic and dynamic biases, model representation of surface inversions, and cloud characteristics. We find persistent seasonal thermodynamic biases near the surface that vary with wind direction, and may be related to the RAP’s handling of sea ice and ocean interactions. These biases seem to have diminished in the latest version of the RAP (version 5), which includes refined handling of sea ice, among other improvements. In addition, we find that despite capturing boundary-layer temperature profiles well overall, the RAP struggles to consistently represent strong, shallow surface inversions. Further, while the RAP seems to forecast the presence of clouds accurately in most cases, there are errors in the simulated characteristics of these clouds, which we hypothesize may be related to the RAP’s treatment of mixed-phase clouds.


2015 ◽  
Vol 16 (4) ◽  
pp. 1843-1856 ◽  
Author(s):  
Silvio Davolio ◽  
Francesco Silvestro ◽  
Piero Malguzzi

Abstract Coupling meteorological and hydrological models is a common and standard practice in the field of flood forecasting. In this study, a numerical weather prediction (NWP) chain based on the BOLogna Limited Area Model (BOLAM) and the MOdello LOCale in Hybrid coordinates (MOLOCH) was coupled with the operational hydrological forecasting chain of the Ligurian Hydro-Meteorological Functional Centre to simulate two major floods that occurred during autumn 2011 in northern Italy. Different atmospheric simulations were performed by varying the grid spacing (between 1.0 and 3.0 km) of the high-resolution meteorological model and the set of initial/boundary conditions driving the NWP chain. The aim was to investigate the impact of these parameters not only from a meteorological perspective, but also in terms of discharge predictions for the two flood events. The operational flood forecasting system was thus used as a tool to validate in a more pragmatic sense the quantitative precipitation forecast obtained from different configurations of the NWP system. The results showed an improvement in flood prediction when a high-resolution grid was employed for atmospheric simulations. In turn, a better description of the evolution of the precipitating convective systems was beneficial for the hydrological prediction. Although the simulations underestimated the severity of both floods, the higher-resolution model chain would have provided useful information to the decision-makers in charge of protecting citizens.


2019 ◽  
Vol 76 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
Fuqing Zhang ◽  
Y. Qiang Sun ◽  
Linus Magnusson ◽  
Roberto Buizza ◽  
Shian-Jiann Lin ◽  
...  

Abstract Understanding the predictability limit of day-to-day weather phenomena such as midlatitude winter storms and summer monsoonal rainstorms is crucial to numerical weather prediction (NWP). This predictability limit is studied using unprecedented high-resolution global models with ensemble experiments of the European Centre for Medium-Range Weather Forecasts (ECMWF; 9-km operational model) and identical-twin experiments of the U.S. Next-Generation Global Prediction System (NGGPS; 3 km). Results suggest that the predictability limit for midlatitude weather may indeed exist and is intrinsic to the underlying dynamical system and instabilities even if the forecast model and the initial conditions are nearly perfect. Currently, a skillful forecast lead time of midlatitude instantaneous weather is around 10 days, which serves as the practical predictability limit. Reducing the current-day initial-condition uncertainty by an order of magnitude extends the deterministic forecast lead times of day-to-day weather by up to 5 days, with much less scope for improving prediction of small-scale phenomena like thunderstorms. Achieving this additional predictability limit can have enormous socioeconomic benefits but requires coordinated efforts by the entire community to design better numerical weather models, to improve observations, and to make better use of observations with advanced data assimilation and computing techniques.


2017 ◽  
Vol 145 (11) ◽  
pp. 4345-4363 ◽  
Author(s):  
Ben Harvey ◽  
John Methven ◽  
Chloe Eagle ◽  
Humphrey Lean

In situ aircraft observations are used to interrogate the ability of a numerical weather prediction model to represent flow structure and turbulence at a narrow cold front. Simulations are performed at a range of nested resolutions with grid spacings of 12 km down to 100 m, and the convergence with resolution is investigated. The observations include the novel feature of a low-altitude circuit around the front that is closed in the frame of reference of the front, thus allowing the direct evaluation of area-average vorticity and divergence values from circuit integrals. As such, the observational strategy enables a comparison of flow structures over a broad range of spatial scales, from the size of the circuit itself ([Formula: see text]100 km) to small-scale turbulent fluctuations ([Formula: see text]10 m). It is found that many aspects of the resolved flow converge successfully toward the observations with resolution if sampling uncertainty is accounted for, including the area-average vorticity and divergence measures and the narrowest observed cross-frontal width. In addition, there is a gradual handover from parameterized to resolved turbulent fluxes of moisture and momentum as motions in the convective boundary layer behind the front become partially resolved in the highest-resolution simulations. In contrast, the parameterized turbulent fluxes associated with subgrid-scale shear-driven turbulence ahead of the front do not converge on the observations. The structure of frontal rainbands associated with a shear instability along the front also does not converge with resolution, indicating that the mechanism of the frontal instability may not be well represented in the simulations.


Sign in / Sign up

Export Citation Format

Share Document