Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model

2015 ◽  
Vol 30 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Kosuke Ito ◽  
Tohru Kuroda ◽  
Kazuo Saito ◽  
Akiyoshi Wada

Abstract This work quantifies the benefits of using a high-resolution atmosphere–ocean coupled model in tropical cyclone (TC) intensity forecasts in the vicinity of Japan. To do so, a large number of high-resolution calculations were performed by running the Japan Meteorological Agency (JMA) nonhydrostatic atmospheric mesoscale model (AMSM) and atmosphere–ocean coupled mesoscale model (CMSM). A total of 281 3-day forecasts were compiled for 34 TCs from April 2009 to September 2012 for each model. The performance of these models is compared with the JMA global atmospheric spectral model (GSM) that is used for the operational TC intensity guidance. The TC intensities are better predicted by CMSM than the other models. The improvement rates in CMSM relative to GSM and AMSM generally increase with increasing forecast time (FT). CMSM is better than GSM and AMSM by 27.4% and 21.3% at FT = 48 h in terms of minimum sea level pressure, respectively. Regarding the maximum wind speed, CMSM is better than GSM and AMSM by 12.8% and 19.5% at FT = 48 h, respectively. This is due to smaller initial intensity errors and sea surface cooling consistent with in situ observations that suppress erroneous TC intensification. Thus, a high-resolution coupled model is promising for TC intensity prediction in the area surrounding Japan, where most of the TCs are in a decay stage. In contrast, coupling to the upper-ocean model yields only a negligible difference in the TC track forecast skill on average.

2019 ◽  
Vol 147 (10) ◽  
pp. 3721-3740 ◽  
Author(s):  
Masahiro Sawada ◽  
Zaizhong Ma ◽  
Avichal Mehra ◽  
Vijay Tallapragada ◽  
Ryo Oyama ◽  
...  

Abstract The impact of the assimilation of high spatial and temporal resolution atmospheric motion vectors (AMVs) on tropical cyclone (TC) forecasts has been investigated. The high-resolution AMVs are derived from the full disk scan of the new generation geostationary satellite Himawari-8. Forecast experiments for three TCs in 2016 in a western North Pacific basin are performed using the National Centers for Environmental Prediction (NCEP) operational Hurricane Weather Research and Forecasting Model (HWRF). Two different ensemble–variational hybrid data assimilation configurations (using background error covariance created by global ensemble forecast and HWRF ensemble forecast), based on the Gridpoint Statistical Interpolation (GSI), are used for the sensitivity experiments. The results show that the inclusion of high-resolution Himawari-8 AMVs (H8AMV) can benefit the track forecast skill, especially for long-range lead times. The diagnosis of optimal steering flow indicates that the improved track forecast seems to be attributed to the improvement of initial steering flow surrounding the TC. However, the assimilation of H8AMV increases the negative intensity bias and error, especially for short-range forecast lead times. The investigation of the structural change from the assimilation of H8AMV revealed that the following two factors are likely related to this degradation: 1) an increase of inertial stability outside the radius of maximum wind (RMW), which weakens the boundary layer inflow; and 2) a drying around and outside the RMW. Assimilating H8AMV using background error covariance created from HWRF ensemble forecast contributes to a significant reduction in negative intensity bias and error, and there is a significant benefit to TC size forecast.


2016 ◽  
Vol 9 (10) ◽  
pp. 3655-3670 ◽  
Author(s):  
Helene T. Hewitt ◽  
Malcolm J. Roberts ◽  
Pat Hyder ◽  
Tim Graham ◽  
Jamie Rae ◽  
...  

Abstract. There is mounting evidence that resolving mesoscale eddies and western boundary currents as well as topographically controlled flows can play an important role in air–sea interaction associated with vertical and lateral transports of heat and salt. Here we describe the development of the Met Office Global Coupled Model version 2 (GC2) with increased resolution relative to the standard model: the ocean resolution is increased from 1/4 to 1/12° (28 to 9 km at the Equator), the atmosphere resolution increased from 60 km (N216) to 25 km (N512) and the coupling period reduced from 3 hourly to hourly. The technical developments that were required to build a version of the model at higher resolution are described as well as results from a 20-year simulation. The results demonstrate the key role played by the enhanced resolution of the ocean model: reduced sea surface temperature (SST) biases, improved ocean heat transports, deeper and stronger overturning circulation and a stronger Antarctic Circumpolar Current. Our results suggest that the improvements seen here require high resolution in both atmosphere and ocean components as well as high-frequency coupling. These results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.


2016 ◽  
Author(s):  
Helene T. Hewitt ◽  
Malcolm J. Roberts ◽  
Pat Hyder ◽  
Tim Graham ◽  
Jamie Rae ◽  
...  

Abstract. There is mounting evidence that resolving mesoscale eddies and boundary currents in the surface ocean field can play an important role in air-sea interaction associated with vertical and lateral transports of heat and salt. Here we describe the development of the Met Office Global Coupled Model version 2 (GC2) with increased resolution relative to the standard model: the ocean resolution is increased from 1/4° to 1/12° (28 km to 9 km at the Equator), the atmosphere resolution increased from 60 km (N216) to 25 km (N512) and the coupling frequency increased from 3-hourly to hourly. The technical developments that were required to build a version of the model at higher resolution are described as well as results from a 20 year simulation. The results demonstrate the key role played by the enhanced resolution of the ocean model: reduced Sea Surface Temperature biases, improved ocean heat transports, deeper and stronger overturning circulation and a stronger Antarctic Circumpolar Current. Our results suggest that the improvements seen here require high resolution in both atmosphere and ocean components as well as high frequency coupling. These results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.


2015 ◽  
Vol 143 (10) ◽  
pp. 4012-4037 ◽  
Author(s):  
Colin M. Zarzycki ◽  
Christiane Jablonowski

Abstract Tropical cyclone (TC) forecasts at 14-km horizontal resolution (0.125°) are completed using variable-resolution (V-R) grids within the Community Atmosphere Model (CAM). Forecasts are integrated twice daily from 1 August to 31 October for both 2012 and 2013, with a high-resolution nest centered over the North Atlantic and eastern Pacific Ocean basins. Using the CAM version 5 (CAM5) physical parameterization package, regional refinement is shown to significantly increase TC track forecast skill relative to unrefined grids (55 km, 0.5°). For typical TC forecast integration periods (approximately 1 week), V-R forecasts are able to nearly identically reproduce the flow field of a globally uniform high-resolution forecast. Simulated intensity is generally too strong for forecasts beyond 72 h. This intensity bias is robust regardless of whether the forecast is forced with observed or climatological sea surface temperatures and is not significantly mitigated in a suite of sensitivity simulations aimed at investigating the impact of model time step and CAM’s deep convection parameterization. Replacing components of the default physics with Cloud Layers Unified by Binormals (CLUBB) produces a statistically significant improvement in forecast intensity at longer lead times, although significant structural differences in forecasted TCs exist. CAM forecasts the recurvature of Hurricane Sandy into the northeastern United States 60 h earlier than the Global Forecast System (GFS) model using identical initial conditions, demonstrating the sensitivity of TC forecasts to model configuration. Computational costs associated with V-R simulations are dramatically decreased relative to globally uniform high-resolution simulations, demonstrating that variable-resolution techniques are a promising tool for future numerical weather prediction applications.


2014 ◽  
Vol 41 (2) ◽  
pp. 652-660 ◽  
Author(s):  
S. Zhang ◽  
M. Zhao ◽  
S.-J. Lin ◽  
X. Yang ◽  
W. Anderson

Abstract The sporadic formation of short-lived convective clouds in the eye of Tropical Cyclone (TC) Trami (2018) is investigated using dropsonde data and simulation results from a coupled atmosphere–ocean model. According to the satellite data, top height of the convective clouds exceeds 9 km above mean sea level, considerably taller than that of typical hub clouds (2–3 km). These clouds are located 10–30 km away from the TC center. Hence, these convective clouds are called deep eye clouds (DECs) in this study. The dropsonde data reveal increase in relative humidity in the eye region during the formation of DECs. Short-lived convective clouds are simulated up to the middle troposphere in the eye region in the coupled model. Investigation of thermodynamic conditions shows a weakened low-level warm core and associated favorable conditions for convection in the eye region during the formation of DECs. DECs are formed after the weakening and outward displacement of convective heating within the eyewall. To elucidate the influence of the changes in convective heating within the eyewall on the formation of DECs, we calculate secondary circulation and associated adiabatic warming induced by convective heating within the eyewall using the Sawyer–Eliassen equation. In the eye region, weakenings of subsidence and associated vertical potential temperature advection are observed as DECs are formed. This suggests that the weakening and outward displacement of convective heating within the eyewall create favorable conditions for the sporadic formation of DECs.


2014 ◽  
Vol 27 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Shinsuke Iwasaki ◽  
Atsuhiko Isobe ◽  
Shin’ichiro Kako

Abstract A regional atmosphere–ocean coupled model is developed, based on the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model in conjunction with the Princeton Ocean Model, to investigate atmosphere–ocean coupled processes that might occur over the Yellow and East China Sea shelves in winter. To examine how the coupled processes actually work in the ocean, sea surface temperatures (SSTs) computed in both coupled and uncoupled models are compared with SSTs synthesized from multiple satellite observations. The results indicate that the coupled model significantly improves the negative SST bias in shallow waters around the Chinese coast produced by the uncoupled model. Cool and dry northerly winds from the Asian landmass reduce SST in these shallow waters through intensive upward heat loss. Thereafter, the horizontal gradient of sea level pressure (SLP) around the Chinese coast moderates because the land–ocean heat contrast weakens owing to the reduced SST in the coastal waters. As a result, the wind speed weakens, in line with the moderated horizontal SLP gradient. Moreover, northerly winds can reduce the transport of cool and dry air from the Asian landmass. Hence, upward heat flux around the coastal waters is reduced because of the weakening of the northerly winds and the decreased cool and dry air. This negative feedback thereby suppresses excessive SST cooling along the Chinese coast during winter.


2006 ◽  
Vol 134 (5) ◽  
pp. 1465-1483 ◽  
Author(s):  
Julie Pullen ◽  
James D. Doyle ◽  
Richard P. Signell

Abstract High-resolution numerical simulations of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) were conducted to examine the impact of the coupling strategy (one versus two way) on the ocean and atmosphere model skill, and to elucidate dynamical aspects of the coupled response. Simulations for 23 September–23 October 2002 utilized 2- and 4-km resolution grids for the ocean and atmosphere, respectively. During a strong wind and sea surface cooling event, cold water fringed the west and north coasts in the two-way coupled simulation (where the atmosphere interacted with SST generated by the ocean model) and attenuated by approximately 20% of the cross-basin extension of bora-driven upward heat fluxes relative to the one-way coupled simulation (where the atmosphere model was not influenced by the ocean model). An assessment of model results using remotely sensed and in situ measurements of ocean temperature along with overwater and coastal wind observations showed enhanced skill in the two-way coupled model. In particular, the two-way coupled model produced spatially complex SSTs after the cooling event that compared more favorably (using mean bias and rms error) with satellite multichannel SST (MCSST) and had a stabilizing effect on the atmosphere. As a consequence, mean mixing was suppressed by over 20% in the atmospheric boundary layer and more realistic mean 10-m wind speeds were produced during the monthlong two-way coupled simulation.


Sign in / Sign up

Export Citation Format

Share Document