scholarly journals Atmosphere–Ocean Coupled Process along Coastal Areas of the Yellow and East China Seas in Winter

2014 ◽  
Vol 27 (1) ◽  
pp. 155-167 ◽  
Author(s):  
Shinsuke Iwasaki ◽  
Atsuhiko Isobe ◽  
Shin’ichiro Kako

Abstract A regional atmosphere–ocean coupled model is developed, based on the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model in conjunction with the Princeton Ocean Model, to investigate atmosphere–ocean coupled processes that might occur over the Yellow and East China Sea shelves in winter. To examine how the coupled processes actually work in the ocean, sea surface temperatures (SSTs) computed in both coupled and uncoupled models are compared with SSTs synthesized from multiple satellite observations. The results indicate that the coupled model significantly improves the negative SST bias in shallow waters around the Chinese coast produced by the uncoupled model. Cool and dry northerly winds from the Asian landmass reduce SST in these shallow waters through intensive upward heat loss. Thereafter, the horizontal gradient of sea level pressure (SLP) around the Chinese coast moderates because the land–ocean heat contrast weakens owing to the reduced SST in the coastal waters. As a result, the wind speed weakens, in line with the moderated horizontal SLP gradient. Moreover, northerly winds can reduce the transport of cool and dry air from the Asian landmass. Hence, upward heat flux around the coastal waters is reduced because of the weakening of the northerly winds and the decreased cool and dry air. This negative feedback thereby suppresses excessive SST cooling along the Chinese coast during winter.

2015 ◽  
Vol 30 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Kosuke Ito ◽  
Tohru Kuroda ◽  
Kazuo Saito ◽  
Akiyoshi Wada

Abstract This work quantifies the benefits of using a high-resolution atmosphere–ocean coupled model in tropical cyclone (TC) intensity forecasts in the vicinity of Japan. To do so, a large number of high-resolution calculations were performed by running the Japan Meteorological Agency (JMA) nonhydrostatic atmospheric mesoscale model (AMSM) and atmosphere–ocean coupled mesoscale model (CMSM). A total of 281 3-day forecasts were compiled for 34 TCs from April 2009 to September 2012 for each model. The performance of these models is compared with the JMA global atmospheric spectral model (GSM) that is used for the operational TC intensity guidance. The TC intensities are better predicted by CMSM than the other models. The improvement rates in CMSM relative to GSM and AMSM generally increase with increasing forecast time (FT). CMSM is better than GSM and AMSM by 27.4% and 21.3% at FT = 48 h in terms of minimum sea level pressure, respectively. Regarding the maximum wind speed, CMSM is better than GSM and AMSM by 12.8% and 19.5% at FT = 48 h, respectively. This is due to smaller initial intensity errors and sea surface cooling consistent with in situ observations that suppress erroneous TC intensification. Thus, a high-resolution coupled model is promising for TC intensity prediction in the area surrounding Japan, where most of the TCs are in a decay stage. In contrast, coupling to the upper-ocean model yields only a negligible difference in the TC track forecast skill on average.


Author(s):  
Guillaume Samson ◽  
Florian Lemarié ◽  
Théo Brivoal ◽  
Romain Bourdallé-Badie ◽  
Hervé Giordani ◽  
...  

<p>High-resolution ocean-atmosphere coupled models are able to simulate realistically air-sea interactions taking place at mesoscale between ocean eddies and fronts, and the lower atmosphere. These coupled processes have the potential to improve oceanic simulations by modulating wind work input and turbulent heat fluxes. However, the computational cost and the complexity of such coupled models appear prohibitive and inadequate in the context of global eddying oceanic simulations.</p><p>We propose here an alternative approach based on a one-dimensional vertical atmospheric boundary layer (ABL) model driven by large-scale atmospheric data (forecasts or reanalysis). Its intermediate complexity between a bulk parameterization and a full atmospheric model associated with a limited computational cost makes this approach well suited for applications ranging from process studies to global operational oceanography.</p><p>First, the ABL model is validated against a set of classic atmospheric testcases such as a SST front. The comparison with analytical and LES solutions indicates a good agreement with the ABL model results.</p><p>Then, two realistic configurations based on NEMO ocean model are presented to assess air-sea interactions: a global 1/4° configuration including sea-ice and a regional 1/36° configuration covering western Europe.</p><p>We show that the ocean-ABL coupled model produces negative correlations between surface current and wind stress mesoscale curl anomalies (oceanic eddy damping effect), and positive correlations between surface current and wind speed mesoscale curl anomalies (wind adjustment and ocean re-energization effects) in good agreement with literature. We also show that the simulated wind speed positively correlates with SST mesoscale anomalies, as observed with satellite data and full coupled models.</p><p>To summarize, the ocean-ABL coupled model is able to realistically represent mesoscale dynamical and thermal feedbacks while keeping a good consistency with the atmospheric forcing, and with a very limited computational cost (10% of the ocean model). The ABL model will be released with the next NEMO version.</p><div> <div> <div>1. Choisir un champ pour le nom d'utilisateur</div> <div>Vous pouvez également utiliser les nombres pour choisir un champ depuis le clavier.</div> <div>Raccourcis-clavier:<br> Ignorer<br> Ignorer<br> Continuer<br> Confirmer<br> Afficher plus<br> Supprimer la sélection</div> </div> </div><div> </div>


2020 ◽  
Vol 39 (11) ◽  
pp. 52-68
Author(s):  
Qian Yang ◽  
Hailong Liu ◽  
Pengfei Lin ◽  
Yiwen Li

2021 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Zhehao Yang ◽  
Weizeng Shao ◽  
Yuyi Hu ◽  
Qiyan Ji ◽  
Huan Li ◽  
...  

Marine oil spills occur suddenly and pose a serious threat to ecosystems in coastal waters. Oil spills continuously affect the ocean environment for years. In this study, the oil spill caused by the accident of the Sanchi ship (2018) in the East China Sea was hindcast simulated using the oil particle-tracing method. Sea-surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF), currents simulated from the Finite-Volume Community Ocean Model (FVCOM), and waves simulated from the Simulating WAves Nearshore (SWAN) were employed as background marine dynamics fields. In particular, the oil spill simulation was compared with the detection from Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) images. The validation of the SWAN-simulated significant wave height (SWH) against measurements from the Jason-2 altimeter showed a 0.58 m root mean square error (RMSE) with a 0.93 correlation (COR). Further, the sea-surface current was compared with that from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2), yielding a 0.08 m/s RMSE and a 0.71 COR. Under these circumstances, we think the model-simulated sea-surface currents and waves are reliable for this work. A hindcast simulation of the tracks of oil slicks spilled from the Sanchi shipwreck was conducted during the period of 14–17 January 2018. It was found that the general track of the simulated oil slicks was consistent with the observations from the collected GF-3 SAR images. However, the details from the GF-3 SAR images were more obvious. The spatial coverage of oil slicks between the SAR-detected and simulated results was about 1 km2. In summary, we conclude that combining numerical simulation and SAR remote sensing is a promising technique for real-time oil spill monitoring and the prediction of oil spreading.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chaoyu Yang ◽  
Haibin Ye

AbstractA coastal front was detected in the eastern Guangdong (EGD) coastal waters during a downwelling-favorable wind period by using the diffuse attenuation coefficient at 490 nm (Kd(490)). Long-term satellite data, meteorological data and hydrographic data collected from 2003 to 2017 were jointly utilized to analyze the environmental factors affecting coastal fronts. The intensities of the coastal fronts were found to be associated with the downwelling intensity. The monthly mean Kd(490) anomalies in shallow coastal waters less than 25 m deep along the EGD coast and the monthly mean Ekman pumping velocities retrieved by the ERA5 dataset were negatively correlated, with a Pearson correlation of − 0.71. The fronts started in October, became weaker and gradually disappeared after January, extending southwestward from the southeastern coast of Guangdong Province to the Wanshan Archipelago in the South China Sea (SCS). The cross-frontal differences in the mean Kd(490) values could reach 3.7 m−1. Noticeable peaks were found in the meridional distribution of the mean Kd(490) values at 22.5°N and 22.2°N and in the zonal distribution of the mean Kd(490) values at 114.7°E and 114.4°E. The peaks tended to narrow as the latitude increased. The average coastal surface currents obtained from the global Hybrid Coordinate Ocean Model (HYCOM) showed that waters with high nutrient and sediment contents in the Fujian and Zhejiang coastal areas in the southern part of the East China Sea could flow into the SCS. The directions and lengths of the fronts were found to be associated with the flow advection.


1998 ◽  
Vol 120 (2) ◽  
pp. 77-84 ◽  
Author(s):  
I. V. Polyakov ◽  
I. Yu. Kulakov ◽  
S. A. Kolesov ◽  
N. Eu. Dmitriev ◽  
R. S. Pritchard ◽  
...  

A fully prognostic coupled ice-ocean model is described. The ice model is based on the elastic-plastic constitutive law with ice mass and compactness described by distribution functions. The ice thermodynamics model is applied individually to each ice thickness category. Advection of the ice partial mass and concentrations is parameterized by a fourth-order algorithm that conserves monotonicity of the solution. The ocean is described as a three-dimensional time-dependent baroclinic model with free surface. The coupled model is applied to establish the Arctic Ocean seasonal climatology using fully prognostic models for ice and ocean. Results reflect the importance of the ice melting/freezing in the formation of the thermohaline structure of the upper ocean layer.


2009 ◽  
Vol 22 (10) ◽  
pp. 2541-2556 ◽  
Author(s):  
Malcolm J. Roberts ◽  
A. Clayton ◽  
M.-E. Demory ◽  
J. Donners ◽  
P. L. Vidale ◽  
...  

Abstract Results are presented from a matrix of coupled model integrations, using atmosphere resolutions of 135 and 90 km, and ocean resolutions of 1° and 1/3°, to study the impact of resolution on simulated climate. The mean state of the tropical Pacific is found to be improved in the models with a higher ocean resolution. Such an improved mean state arises from the development of tropical instability waves, which are poorly resolved at low resolution; these waves reduce the equatorial cold tongue bias. The improved ocean state also allows for a better simulation of the atmospheric Walker circulation. Several sensitivity studies have been performed to further understand the processes involved in the different component models. Significantly decreasing the horizontal momentum dissipation in the coupled model with the lower-resolution ocean has benefits for the mean tropical Pacific climate, but decreases model stability. Increasing the momentum dissipation in the coupled model with the higher-resolution ocean degrades the simulation toward that of the lower-resolution ocean. These results suggest that enhanced ocean model resolution can have important benefits for the climatology of both the atmosphere and ocean components of the coupled model, and that some of these benefits may be achievable at lower ocean resolution, if the model formulation allows.


2017 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. A Regional Antarctic and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner-Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in-situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase of ice-shelf basal melt rates.


2017 ◽  
Vol 30 (20) ◽  
pp. 8159-8178 ◽  
Author(s):  
H. Annamalai ◽  
Bunmei Taguchi ◽  
Julian P. McCreary ◽  
Motoki Nagura ◽  
Toru Miyama

Abstract Forecasting monsoon rainfall using dynamical climate models has met with little success, partly due to models’ inability to represent the monsoon climatological state accurately. In this article the nature and dynamical causes of their biases are investigated. The approach is to analyze errors in multimodel-mean climatological fields determined from CMIP5, and to carry out sensitivity experiments using a coupled model [the Coupled Model for the Earth Simulator (CFES)] that does represent the monsoon realistically. Precipitation errors in the CMIP5 models persist throughout the annual cycle, with positive (negative) errors occurring over the near-equatorial western Indian Ocean (South Asia). Model errors indicate that an easterly wind stress bias Δτ along the equator begins during April–May and peaks during November; the severity of the Δτ is that the Wyrtki jets, eastward-flowing equatorial currents during the intermonsoon seasons (April–May and October–November), are almost eliminated. An erroneous east–west SST gradient (warm west and cold east) develops in June. The structure of the model errors indicates that they arise from Bjerknes feedback in the equatorial Indian Ocean (EIO). Vertically integrated moisture and moist static energy budgets confirm that warm SST bias in the western EIO anchors moist processes that cause the positive precipitation bias there. In CFES sensitivity experiments in which Δτ or warm SST bias over the western EIO is artificially introduced, errors in the EIO are similar to those in the CMIP5 models; moreover, precipitation over South Asia is reduced. An overall implication of these results is that South Asian rainfall errors in CMIP5 models are linked to errors of coupled processes in the western EIO, and in coupled models correct representation of EIO coupled processes (Bjerknes feedback) is a necessary condition for realistic monsoon simulation.


2017 ◽  
Author(s):  
Jaromir Jakacki ◽  
Sebastian Meler

Abstract. A three dimensional, regional coupled ice-ocean model based on the open-source Community Earth System Model has been developed and implemented for the Baltic Sea. The model consists of 66 vertical levels and has a horizontal resolution of approx. 2.3 km. The paper focuses on sea ice component results but the main changes have been introduced in the ocean part of the coupled model. The hydrodynamic part, being one of the most important components, has been also presented and validated. The ice model results were validated against the radar and satellite data, and the method of validation based on probability was introduced. In the last two decades satellite and model results show an increase in the ice extent over the whole Baltic Sea, which is an evidence of a negative trend in air temperature in recent decades and increasing of winter discharge from the catchment area.


Sign in / Sign up

Export Citation Format

Share Document