scholarly journals A Numerical Study on the Extreme Intensification of Hurricane Patricia (2015)

2018 ◽  
Vol 33 (4) ◽  
pp. 989-999 ◽  
Author(s):  
K. Ryder Fox ◽  
Falko Judt

Abstract In October 2015 Hurricane Patricia stormed through the eastern Pacific, taking its place as the strongest hurricane in recorded history when its intensity reached a record breaking 185 kt (1 kt = 0.51 m s−1). Operational models and the National Hurricane Center’s official forecast failed to predict Patricia’s unprecedented intensification, provoking questions as to whether such an extreme event can actually be forecast. This study reports on the successful simulation of Patricia using a state-of-the-art high-resolution numerical weather prediction model. It was found that high model resolution (Δx ≤ 1 km), vortex initialization, and the parameterization of dissipative heating were key factors in realistically simulating Patricia’s intensity evolution. The simulation was used to investigate Patricia’s environment in terms of sea surface temperature, vertical wind shear, and humidity, under the premise that a simulation able to capture Patricia’s peak intensity would also accurately represent Patricia’s environment. Compared with a climatology derived from the Statistical Hurricane Intensity Prediction Scheme dataset, sea surface temperature ranked in the 99th percentile and environmental vertical wind shear in the 83rd percentile (ordered from high to low). However, humidity ranked more moderately. Ensemble forecasts indicate that Patricia had relatively high predictability in comparison to other well-studied rapid intensification cases such as 2010’s Hurricane Earl. The results from this study imply that high-resolution models are in principle able to predict the intensity of extreme hurricanes like Patricia.

2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2005 ◽  
Vol 44 (11) ◽  
pp. 1723-1744 ◽  
Author(s):  
Volker Wulfmeyer ◽  
Tijana Janjić

Abstract Shipborne observations obtained with the NOAA high-resolution Doppler lidar (HRDL) during the 1999 Nauru (Nauru99) campaign were used to study the structure of the marine boundary layer (MBL) in the tropical Pacific Ocean. During a day with weak mesoscale activity, diurnal variability of the height of the convective MBL was observed using HRDL backscatter data. The observed diurnal variation in the MBL height had an amplitude of about 250 m. Relations between the MBL height and in situ measurements of sea surface temperature as well as latent and sensible heat fluxes were examined. Good correlation was found with the sea surface temperature. The correlation with the latent heat flux was lower, and practically no correlation between the MBL height and the sensible heat and buoyancy fluxes could be detected. Horizontal wind profiles were measured using a velocity–azimuth display scan of HRDL velocity data. Strong wind shear at the top of the MBL was observed in most cases. Comparison of these results with GPS radiosonde data shows discrepancies in the wind intensity and direction, which may be due to different observation times and locations as well as due to multipath effects at the ship’s platform. Vertical wind profiles corrected for ship’s motion were used to derive vertical velocity variance and skewness profiles. Motion compensation had a significant effect on their shape. Normalized by the convective velocity scale and by the top of the mixed layer zi, the variance varied between 0.45 and 0.65 at 0.4z/zi and decreased to 0.2 at 1.0z/zi. The skewness ranged between 0.3 and 0.8 in the MBL and showed in almost all cases a maximum between 1.0z/zi and 1.1z/zi. These profiles revealed the existence of another turbulent layer above the MBL, which was probably driven by wind shear and cloud condensation processes.


2010 ◽  
Vol 49 (11) ◽  
pp. 2267-2284 ◽  
Author(s):  
Jason C. Knievel ◽  
Daran L. Rife ◽  
Joseph A. Grim ◽  
Andrea N. Hahmann ◽  
Joshua P. Hacker ◽  
...  

Abstract This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites’ resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air–sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the ±1.0°C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this phenomenon was chosen for demonstrating the use of the MODIS-based composite in an NWP model. A simulated sea breeze in the vicinity of New York City and Long Island shows a small, net, but far from universal improvement when MODIS-based composites are used in place of RTG analyses. The timing of the sea breeze’s arrival is more accurate at some stations, and the near-surface temperature, wind, and humidity within the breeze are more realistic.


2013 ◽  
Vol 5 (6) ◽  
pp. 3123-3139 ◽  
Author(s):  
Yasumasa Miyazawa ◽  
Hiroshi Murakami ◽  
Toru Miyama ◽  
Sergey Varlamov ◽  
Xinyu Guo ◽  
...  

2014 ◽  
Vol 57 (5) ◽  
Author(s):  
Nazario Tartaglione ◽  
Rodrigo Caballero

<p>This article investigates the role of sea surface temperature (SST) as well as the effects of evaporation and moisture convergence on the evolution of cyclone Klaus, which occurred on January 23 and 24, 2009. To elucidate the role of sea surface temperature (SST) and air–sea fluxes in the dynamics of the cyclone, ten hydrostatic mesoscale simulations were performed by Bologna Limited Area Model (BOLAM). The first one was a control experiment with European Centre for Medium-Range Weather Forecasts (ECMWF) SST analysis. The nine following simulations are sensitivity experiments where the SST are obtained by adding a constant value by 1 to 9 K to the ECMWF field. Results show that a warmer sea increases the surface latent heat fluxes and the moisture convergence, favoring the development of convection in the storm. Convection is affected immediately by the increased SST. Later on, drop of mean sea level pressure (MSLP) occurs together with increasing of surface winds. The cyclone trajectory is not sensitive to change in SST differently from MSLP and convective precipitation.</p>


2020 ◽  
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model. Its development is on the basis of the medium-resolution version BCC-CSM2-MR which is the baseline for BCC participation to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamic core and physical processes. BCC-CSM2-HR is evaluated for present-day climate simulations from 1971 to 2000, which are performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. We focus on basic atmospheric mean states over the globe and variabilities in the tropics including the tropic cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR keeps well the global energy balance and can realistically reproduce main patterns of atmosphere temperature and wind, precipitation, land surface air temperature and sea surface temperature. It also improves in the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, is almost disappeared in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observation than their counterparts in BCC-CSM2-MR. We also note some weakness in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold Sea Surface Temperature (SST) biases and the insufficient number of tropical cyclones in the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document