scholarly journals A 7-Year Climatology of Warm-Sector Heavy Rainfall over South China during the Pre-Summer Months

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.

2018 ◽  
Vol 57 (12) ◽  
pp. 2817-2833 ◽  
Author(s):  
Mingxin Li ◽  
Da-Lin Zhang ◽  
Jisong Sun ◽  
Qinghong Zhang

AbstractAn 8-yr (i.e., 2008–15) climatology of the spatiotemporal characteristics of hail events in China and their associated environmental conditions are examined using hail observations, L-band rawinsondes, and global reanalysis data. A total of 1003 hail events with maximum hail diameter (MHD) of greater than 5 mm are selected and then sorted into three hail-size bins. Hail events with the largest MHD bin correspond to the median vertical wind shear in the lowest 6-km layer (SHR6) of 21.6 m s−1, precipitable water (PW) of 34.8 mm, and convective available potential energy (CAPE) of 2192 J kg−1. Hail with different MHD bins share similar freezing-level heights (FLHs) of about 4000 m. The thickness of the hail growth zone is thinner for hail events with the largest MHD bin. Hail events with different MHD bins display seasonal variations associated with the summer monsoon; that is, the hail season starts in South China in spring and then shifts to North China in summer. Larger hail is mainly observed during the spring in South China before monsoon onset in the presence of an upper-level jet and a low-level southwesterly flow accounting for large SHR6 and PW. In contrast, smaller-MHD hailstorms occur mainly during the summer in North China when surface heating is high and the low-level southerly flow shifts northward with pronounced baroclinicity providing large CAPE and PW, moderate SHR6, and low FLH. Environmental CAPE and SHR6 for large hailstones in China are comparable in magnitude to those in the United States but larger than those in some European countries.


2016 ◽  
Vol 31 (3) ◽  
pp. 763-786 ◽  
Author(s):  
Steven E. Koch ◽  
Randolph Ware ◽  
Hongli Jiang ◽  
Yuanfu Xie

Abstract This study documents a very rapid increase in convective instability, vertical wind shear, and mesoscale forcing for ascent leading to the formation of a highly unusual tornado as detected by a ground-based microwave radiometer and wind profiler, and in 1-km resolution mesoanalyses. Mesoscale forcing for the rapid development of severe convection began with the arrival of a strong upper-level jet streak with pronounced divergence in its left exit region and associated intensification of the low-level flow to the south of a pronounced warm front. The resultant increase in stretching deformation along the front occurred in association with warming immediately to its south as low-level clouds dissipated. This created a narrow ribbon of intense frontogenesis and a rapid increase in convective available potential energy (CAPE) within 75 min of tornadogenesis. The Windsor, Colorado, storm formed at the juncture of this warm frontogenesis zone and a developing dryline. Storm-relative helicity suddenly increased to large values during this pretornadic period as a midtropospheric layer of strong southeasterly winds descended to low levels. The following events also occurred simultaneously within this short period of time: a pronounced decrease in midtropospheric equivalent potential temperature θe accompanying the descending jet, an increase in low-level θe associated with the surface sensible heating, and elimination of the capping inversion and convective inhibition. The simultaneous nature of these rapid changes over such a short period of time, not fully captured in Storm Prediction Center mesoanalyses, was likely critical in generating this unusual tornadic event.


2006 ◽  
Vol 7 ◽  
pp. 153-156 ◽  
Author(s):  
J. M. Sánchez-Laulhé

Abstract. This paper describes the evolution of a mesoscale convective system (MCS) developed over the Alboran Sea on 7 February 2005, using surface, upper-air stations, radar and satellite observations, and also data from an operational numerical model. The system developed during the night as a small convective storm line in an environment with slight convective instability, low precipitable water and strong low-level vertical wind shear near coast. The linear MCS moved northwards reaching the Spanish coast. Then it remained trapped along the coast for more than twelve hours, following the coast more than five hundred kilometres. The MCS here described had a fundamental orographic character due to: (1) the generation of a low-level storm inflow parallel to the coast, formed by blocking of the onshore flow by coastal mountains and (2) the orientation of both the mesoscale ascent from the sea towards the coastal mountains and the midlevel rear inflow from the coastal mountains to the sea. The main motivation of this work was to obtain a better understanding of the mechanisms relevant to the formation of heavy rainfall episodes occurring at Spanish Mediterranean coast associated with this kind of stationary or slowly moving MCSs.


2015 ◽  
Vol 143 (7) ◽  
pp. 2459-2484 ◽  
Author(s):  
Andrew B. Penny ◽  
Patrick A. Harr ◽  
Michael M. Bell

Abstract Large uncertainty still remains in determining whether a tropical cloud cluster will develop into a tropical cyclone. During The Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (T-PARC)/Tropical Cyclone Structure-2008 (TCS-08) field experiment, over 50 tropical cloud clusters were monitored for development, but only 4 developed into a tropical cyclone. One nondeveloping tropical disturbance (TCS025) was closely observed for potential formation during five aircraft research missions, which provided an unprecedented set of observations pertaining to the large-scale and convective environments of a nondeveloping system. The TCS025 disturbance was comprised of episodic convection that occurred in relation to the diurnal cycle along the eastern extent of a broad low-level trough. The upper-level environment was dominated by two cyclonic cells in the tropical upper-tropospheric trough (TUTT) north of the low-level trough in which the TCS025 circulation was embedded. An in-depth examination of in situ observations revealed that the nondeveloping circulation was asymmetric and vertically misaligned, which led to larger system-relative flow on the mesoscale. Persistent environmental vertical wind shear and horizontal shearing deformation near the circulation kept the system from becoming better organized and appears to have allowed low equivalent potential temperature () air originating from one of the TUTT cells to the north (upshear) to impact the thermodynamic environment of TCS025. This in turn weakened subsequent convection that might otherwise have improved alignment and contributed to the transition of TCS025 to a tropical cyclone.


2011 ◽  
Vol 26 (6) ◽  
pp. 808-827 ◽  
Author(s):  
Philip N. Schumacher ◽  
Joshua M. Boustead

Abstract The morphology of mesocyclones associated with the regional tornado outbreak on 24 June 2003 is examined to illustrate the effects of changing vertical wind profiles. The large-scale environment supported deep moist convection, with forcing for ascent and convective instability. Postevent analysis indicated there were changes in the shear in space and time across a small geographical area. The event was separated into sectors based on both the synoptic setting and the differing shear profiles. Near the surface warm front, the vertical wind profile and mesocyclone evolution exhibited a classic appearance and produced significant tornadoes. In the warm sector, where no discernible surface boundaries were evident, classic supercells initially were favored but only produced short-lived tornadoes rated as F0 on the Fujita scale. The vertical wind profile changed as a low-level jet intensified after 0000 UTC 25 June. The majority of the vertical wind shear became located below 3 km. Meanwhile, mesocyclone elevation lowered and rotational velocity increased. As the dynamically induced low-level jet and an area of mixed-layer (ML) convective available potential energy (CAPE) became juxtaposed where the boundary layer was uncapped, strong low-level mesocyclones and 32 tornadoes developed in an area with no discernible surface boundaries. The event illustrates the need for warning meteorologists to monitor not only the amount of shear present, but also its distribution in the hodograph owing to its strong correspondence with mesocyclone morphology.


2015 ◽  
Vol 72 (5) ◽  
pp. 1987-2010 ◽  
Author(s):  
John M. Peters ◽  
Russ S. Schumacher

Abstract This study details the development and use of an idealized modeling framework to simulate a quasi-stationary heavy-rain-producing mesoscale convective system (MCS). A 36-h composite progression of atmospheric fields computed from 26 observed warm-season heavy-rain-producing training line/adjoining stratiform (TL/AS) MCSs was used as initial and lateral boundary conditions for a numerical simulation of this MCS archetype. A realistic TL/AS MCS initiated and evolved within a simulated mesoscale environment that featured a low-level jet terminus, maximized low-level warm-air advection, and an elevated maximum in convective available potential energy. The first stage of MCS evolution featured an eastward-moving trailing-stratiform-type MCS that generated a surface cold pool. The initial system was followed by rearward off-boundary development, where a new line of convective cells simultaneously redeveloped north of the surface cold pool boundary. Backbuilding persisted on the western end of the new line, with individual convective cells training over a fixed geographic region. The final stage was characterized by a deepening and southward surge of the cold pool, accompanied by the weakening and slow southward movement of the training line. The low-level vertical wind shear profile favored kinematic lifting along the southeastern cold pool flank over the southwestern flank, potentially explaining why convection propagated with (did not propagate with) the former (latter) outflow boundaries. The morphological features of the simulated MCS are common among observed cases and may, therefore, be generalizable. These results suggest that they are emergent from fundamental features of the large-scale environment, such as persistent regional low-level lifting, and with the vertical environmental wind profile characteristic to TL/AS systems.


2021 ◽  
pp. 1-53
Author(s):  
Xiaoqing Li ◽  
Yu Du

AbstractTwo types of heavy rainfall, namely warm-sector and frontal heavy rainfall, coexist in South China during the pre-summer rainy season and manifest as varying mechanisms and features. They both exhibit close relationships with two types of low-level jets (LLJs): the boundary layer jet (BLJ) and synoptic-system-related low-level jet (SLLJ), but in different ways. The motivation of the present study is to elucidate the statistical relations between two types of heavy rainfall and LLJs over South China using TRMM rainfall data and ERA5 reanalysis. Generally, warm-sector heavy rainfall mainly occurs over coastal areas and during the early morning, which is primarily caused by the interaction between the nocturnal BLJ and land breeze. In contrast, frontal heavy rainfall is mostly concentrated in inland regions and modulated by distinct diurnal forcings at different locations. Statistical analysis indicates that 76% (62%) of the warm-sector (frontal) heavy rainfall events are associated with LLJs. In the presence of heavy rainfall, low-level winds are often strengthened over Beibu Gulf, northern South China Sea, and the south side of fronts, corresponding to two branches of southerly BLJs at ~950 hPa over the ocean and the southwesterly SLLJs at ~850–700 hPa on land, respectively. Furthermore, BLJs are shown to be linked to both types of heavy rainfall and with the most frequent occurrences of rainfall in their exit region, whereas SLLJs are more closely associated with frontal heavy rainfall. The left side (entrance) of the SLLJ axis is favorable for frontal (warm-sector) heavy rainfall production. The regional rainfall distributions are affected by the structures and locations of LLJs.


Author(s):  
Shui-Xin Zhong ◽  
Wei-Guang Meng ◽  
Fu-You Tian

AbstractThe contributions of divergent and rotational wind components to the kinetic energy budget during a record-breaking rainstorm on 7 May 2017 over South China are examined. This warm-sector extreme precipitation caused historical maximum of 382.6 mm accumulated rainfall in 3 h over the Pearl River Delta (PRD) regions in South China. Results show that there was a high low-level southerly wind-speed tongue stretching into the PRD regions from the northeast of the South China Sea (SCS) during this extreme precipitation. The velocity potential exhibited a low-value center as well as a low-level divergence-center over the SCS. The rotational components of the kinetic energy (KR)-related terms were the main contribution-terms of the kinetic energy budget. The main contribution-terms of KR and the divergent component of kinetic energy (KD) were the barotropical and baroclinic processes-related terms due to cross-contour flow and the vertical flux divergence.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Yongren Chen ◽  
Yueqing Li ◽  
Tianliang Zhao

The movement of southwest China vortex (SWV) and its heavy rainfall process in South China had been investigated during June 11–14, 2008. The results show that under the steering of upper-level jet (ULJ) and mid-level westerly trough, SWV moved eastward from southern Sichuan Plateau, across eastern Yunnan-Guizhou Plateau to South China, forming an obvious heavy rain belt. SWV developed in the large storm-relative helicity (SRH) environment, as environmental wind field continuously transferred positive vorticity to it to support its development. The thermodynamic structures of distinctive warm (cold) advections in front (rear) of the SWV movement are also important factors for the SWV evolutions with a southwest low-level jet (LLJ) and vertical wind shear. SWV development was associated with the distributions of negative MPV1 (the barotropic item of moist potential vorticity) and positive MPV2 (the baroclinic item of it). The MPV1 and MPV2 played the dominant role in the formation and the evolution of SWV, respectively. The mesoscale convective systems (MCSs) frequently occurred and persisted in water vapor convergence areas causing the severe heavy rainfall. The areas of high moist helicity divergence and heavy rainfall are consistent, and the moist helicity divergence could be a good indicator for heavy rainfall occurrence.


Sign in / Sign up

Export Citation Format

Share Document