Localization of Glucocorticoid Receptors in the Murine Inner Ear

2002 ◽  
Vol 111 (12) ◽  
pp. 1133-1138 ◽  
Author(s):  
Toshiki Shimazaki ◽  
Masashi Suzuki ◽  
Issei Ichimiya ◽  
Goro Mogi

We performed an immunohistochemical investigation of the distribution of glucocorticoid receptors (GRs) in the murine inner ear and found that GRs were expressed extensively, but with various degrees of immunoreactivity in different regions. We observed the strongest GR expression in the type III fibrocytes of the spiral ligament. Although the immunoreactivity of the cochlear hair cells and of the vestibular sensory epithelia was weak, the neighboring cochlear supporting cells and the subepithelial regions of the vestibular sensory epithelia were immunostained. Staining for GRs was also positive in the spiral ganglia and vestibular ganglia, as well as in the endolymphatic sac. The role of GRs in the inner ear is discussed.

2020 ◽  
Vol 21 (22) ◽  
pp. 8649
Author(s):  
Xin Deng ◽  
Zhengqing Hu

Regeneration of auditory hair cells in adult mammals is challenging. It is also difficult to track the sources of regenerated hair cells, especially in vivo. Previous paper found newly generated hair cells in deafened mouse by injecting a DNA methyltransferase inhibitor 5-azacytidine into the inner ear. This paper aims to investigate the cell sources of new hair cells. Transgenic mice with enhanced green fluorescent protein (EGFP) expression controlled by the Sox2 gene were used in the study. A combination of kanamycin and furosemide was applied to deafen adult mice, which received 4 mM 5-azacytidine injection into the inner ear three days later. Mice were followed for 3, 5, 7 and 14 days after surgery to track hair cell regeneration. Immunostaining of Myosin VIIa and EGFP signals were used to track the fate of Sox2-expressing supporting cells. The results show that (i) expression of EGFP in the transgenic mice colocalized the supporting cells in the organ of Corti, and (ii) the cell source of regenerated hair cells following 5-azacytidine treatment may be supporting cells during 5–7 days post 5-azacytidine injection. In conclusion, 5-azacytidine may promote the conversion of supporting cells to hair cells in chemically deafened adult mice.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Paola Perin ◽  
Simona Tritto ◽  
Laura Botta ◽  
Jacopo Maria Fontana ◽  
Giulia Gastaldi ◽  
...  

We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260443
Author(s):  
Yushi Hayashi ◽  
Hidenori Suzuki ◽  
Wataru Nakajima ◽  
Ikuno Uehara ◽  
Atsuko Tanimura ◽  
...  

Although sensorineural hearing loss (SHL) is relatively common, its cause has not been identified in most cases. Previous studies have suggested that viral infection is a major cause of SHL, especially sudden SHL, but the system that protects against pathogens in the inner ear, which is isolated by the blood-labyrinthine barrier, remains poorly understood. We recently showed that, as audiosensory receptor cells, cochlear hair cells (HCs) are protected by surrounding accessory supporting cells (SCs) and greater epithelial ridge (GER or Kölliker’s organ) cells (GERCs) against viral infections. Here, we found that virus-infected SCs and GERCs induce HC death via production of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Notably, the HCs expressed the TRAIL death receptors (DR) DR4 and DR5, and virus-induced HC death was suppressed by TRAIL-neutralizing antibodies. TRAIL-induced HC death was not caused by apoptosis, and was inhibited by necroptosis inhibitors. Moreover, corticosteroids, the only effective drug for SHL, inhibited the virus-induced transformation of SCs and GERCs into macrophage-like cells and HC death, while macrophage depletion also inhibited virus-induced HC death. These results reveal a novel mechanism underlying virus-induced HC death in the cochlear sensory epithelium and suggest a possible target for preventing virus-induced SHL.


2003 ◽  
Vol 117 (10) ◽  
pp. 775-779 ◽  
Author(s):  
José Ramón García-Berrocal ◽  
Rafael Ramírez-Camacho ◽  
Isabel Millán ◽  
Carmen Górriz ◽  
Almudena Trinidad ◽  
...  

Since the McCabe report, growing indirect evidence has accumulated to indicate the implication of immune mechanisms in the pathogenesis of immune-mediated inner-ear disease (IMIED). A clinical study of a group of patients affected by this condition was performed in order to characterize the immune group, based on a recently reported profile, and compared with the vascular, viral and idiopathic aetiologies of sudden deafness. Patients affected by immune-mediated inner-ear disease had the best and the earliest recovery rate of hearing (p = 0.0028 and p = 0.017, respectively). However, this group of patients also had the higher rate of recurrence (p = 0.034), supporting the typical clinical course of the autoimmune disorders. On the basis of the results the criteria used in the diagnosis of the sudden presentation of the immune-mediated inner ear disease could be accepted leading to the characterization of this condition. Likewise, the role of the supporting cells in the pathogenesis of the IMIED is discussed.


2007 ◽  
Vol 27 (12) ◽  
pp. 3139-3147 ◽  
Author(s):  
M. R. Deans ◽  
D. Antic ◽  
K. Suyama ◽  
M. P. Scott ◽  
J. D. Axelrod ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vikrant Borse ◽  
Matthew Barton ◽  
Harry Arndt ◽  
Tejbeer Kaur ◽  
Mark E. Warchol

AbstractThe Hippo signaling pathway is a key regulator of tissue development and regeneration. Activation of the Hippo pathway leads to nuclear translocation of the YAP1 transcriptional coactivator, resulting in changes in gene expression and cell cycle entry. Recent studies have demonstrated the nuclear translocation of YAP1 during the development of the sensory organs of the inner ear, but the possible role of YAP1 in sensory regeneration of the inner ear is unclear. The present study characterized the cellular localization of YAP1 in the utricles of mice and chicks, both under normal conditions and after HC injury. During neonatal development, YAP1 expression was observed in the cytoplasm of supporting cells, and was transiently expressed in the cytoplasm of some differentiating hair cells. We also observed temporary nuclear translocation of YAP1 in supporting cells of the mouse utricle after short periods in organotypic culture. However, little or no nuclear translocation of YAP1 was observed in the utricles of neonatal or mature mice after ototoxic injury. In contrast, substantial YAP1 nuclear translocation was observed in the chicken utricle after streptomycin treatment in vitro and in vivo. Together, these data suggest that differences in YAP1 signaling may partially account for the differing regenerative abilities of the avian vs. mammalian inner ear.


1984 ◽  
Vol 98 (8) ◽  
pp. 759-765 ◽  
Author(s):  
Jukka Ylikoski ◽  
Liisa Eränkö ◽  
Heikki Päivärinta

Abstract The auditory and vestibular sense-organs of the rabbit were examined for the presence of substance P(SP) by an immunohistochemical technique using a monoclonal SP-antibody. Between 30 and 40 per cent of the cells of the vestibular ganglia and about 50 per cent of the spiral ganglion cells innervating the extreme basal part of the cochlea showed SP-like immunoreactivity. The neural elements in the vestibular sensory epithelia, notably the calyx-formed nerve terminals of type 1 sensory cells of the maculae, also showed strong SP-like immunoreactivity. The findings suggest the possibility of a modulator or transmitter role for SP in the inner ear function.


Sign in / Sign up

Export Citation Format

Share Document