Development of Intercellular Junctions in the Vestibular End-Organ

1984 ◽  
Vol 93 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Dan Bagger-Sjöbäck ◽  
Matti Anniko

The intercellular junctions and the tight junctions in particular are considered to be of great importance for the function of the inner ear. The two fluid compartments of the inner ear, the perilymphatic space and the endolymphatic space, need to be effectively separated from each other in order to maintain the ionic gradients between the two. The tight junctional structures have been described in mature animals of several species. In the present article the development and maturation of the intercellular junctions are described in the mouse embryo. Junctional elements are already present in the 12th gestational day otocyst. Over the next few days, the otocyst is differentiated into a cochlear portion and a vestibular portion. The tight junctions in the vestibular portion gradually attain their mature appearance. It seems as if the tight junctions of the supporting cells develop slightly faster than those of the hair cells. At the time of birth, all epithelial cells have obtained mature appearance. The tight junctions are fully developed on the supporting cells as well as the hair cells. Small gap junctions are present in the 14th gestational day specimens. Two days later the hair cells and the supporting cells are well differentiated; small to medium-sized gap junctions are present only on the supporting cells at this stage. At the time of birth larger gap junctional aggregates have developed on the supporting cells.

Development ◽  
1999 ◽  
Vol 126 (8) ◽  
pp. 1581-1590 ◽  
Author(s):  
P. Chen ◽  
N. Segil

Strict control of cellular proliferation is required to shape the complex structures of the developing embryo. The organ of Corti, the auditory neuroepithelium of the inner ear in mammals, consists of two types of terminally differentiated mechanosensory hair cells and at least four types of supporting cells arrayed precisely along the length of the spiral cochlea. In mice, the progenitors of greater than 80% of both hair cells and supporting cells undergo their terminal division between embryonic day 13 (E13) and E14. As in humans, these cells persist in a non-proliferative state throughout the adult life of the animal. Here we report that the correct timing of cell cycle withdrawal in the developing organ of Corti requires p27(Kip1), a cyclin-dependent kinase inhibitor that functions as an inhibitor of cell cycle progression. p27(Kip1) expression is induced in the primordial organ of Corti between E12 and E14, correlating with the cessation of cell division of the progenitors of the hair cells and supporting cells. In wild-type animals, p27(Kip1) expression is downregulated during subsequent hair cell differentiation, but it persists at high levels in differentiated supporting cells of the mature organ of Corti. In mice with a targeted deletion of the p27(Kip1) gene, proliferation of the sensory cell progenitors continues after E14, leading to the appearance of supernumerary hair cells and supporting cells. In the absence of p27(Kip1), mitotically active cells are still observed in the organ of Corti of postnatal day 6 animals, suggesting that the persistence of p27(Kip1) expression in mature supporting cells may contribute to the maintenance of quiescence in this tissue and, possibly, to its inability to regenerate. Homozygous mutant mice are severely hearing impaired. Thus, p27(Kip1) provides a link between developmental control of cell proliferation and the morphological development of the inner ear.


2020 ◽  
Vol 21 (22) ◽  
pp. 8649
Author(s):  
Xin Deng ◽  
Zhengqing Hu

Regeneration of auditory hair cells in adult mammals is challenging. It is also difficult to track the sources of regenerated hair cells, especially in vivo. Previous paper found newly generated hair cells in deafened mouse by injecting a DNA methyltransferase inhibitor 5-azacytidine into the inner ear. This paper aims to investigate the cell sources of new hair cells. Transgenic mice with enhanced green fluorescent protein (EGFP) expression controlled by the Sox2 gene were used in the study. A combination of kanamycin and furosemide was applied to deafen adult mice, which received 4 mM 5-azacytidine injection into the inner ear three days later. Mice were followed for 3, 5, 7 and 14 days after surgery to track hair cell regeneration. Immunostaining of Myosin VIIa and EGFP signals were used to track the fate of Sox2-expressing supporting cells. The results show that (i) expression of EGFP in the transgenic mice colocalized the supporting cells in the organ of Corti, and (ii) the cell source of regenerated hair cells following 5-azacytidine treatment may be supporting cells during 5–7 days post 5-azacytidine injection. In conclusion, 5-azacytidine may promote the conversion of supporting cells to hair cells in chemically deafened adult mice.


1998 ◽  
Vol 18 (19) ◽  
pp. 7811-7821 ◽  
Author(s):  
Donna M. Fekete ◽  
Shanthini Muthukumar ◽  
Domna Karagogeos

1987 ◽  
Vol 66 (8) ◽  
pp. 1303-1309 ◽  
Author(s):  
T. Inoue ◽  
H. Yamane ◽  
T. Yamamura ◽  
M. Shimono

Long-term repeated administration of isoproterenol (lPR) 2 mg/100 g bw, once daily for ten days, resulted in morphological changes in the intercellular junctions of rat submandibular glands, which were investigated by means of the freeze fracture technique. A significantly increased number of tight-junctional strands was present. These junctional strands extended much deeper toward the basal membrane than those in normal acinar cells. The basal frontier strands that branched from the networks of tight junctions were elongated and had either free-endings or terminal loops, which were more frequently observed in the IPR-treated acinar cells than in untreated acinar cells. Some of the strands of tight junctions were connected to small gap junctions. The diameters of gap junctions were not significantly different from those of control acinar cells. However, smooth areas devoid of particles were found intermingling with the usual packed particles in irregularly shaped small gap junctions. There was no significant difference between the desmosomes of IPR-treated and untreated acinar cells, in terms of either morphology or distribution. These changes in junctional morphology in the IPR-treated acinar cells resemble those seen in salivary glands during development, and in some experimental conditions including tumorous changes.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Paola Perin ◽  
Simona Tritto ◽  
Laura Botta ◽  
Jacopo Maria Fontana ◽  
Giulia Gastaldi ◽  
...  

We characterize the expression pattern of aquaporin-6 in the mouse inner ear by RT-PCR and immunohistochemistry. Our data show that in the inner ear aquaporin-6 is expressed, in both vestibular and acoustic sensory epithelia, by the supporting cells directly contacting hair cells. In particular, in the Organ of Corti, expression was strongest in Deiters' cells, which provide both a mechanical link between outer hair cells (OHCs) and the Organ of Corti, and an entry point for ion recycle pathways. Since aquaporin-6 is permeable to both water and anions, these results suggest its possible involvement in regulating OHC motility, directly through modulation of water and chloride flow or by changing mechanical compliance in Deiters' cells. In further support of this role, treating mice with salicylates, which impair OHC electromotility, dramatically reduced aquaporin-6 expression in the inner ear epithelia but not in control tissues, suggesting a role for this protein in modulating OHCs' responses.


Development ◽  
1998 ◽  
Vol 125 (23) ◽  
pp. 4645-4654 ◽  
Author(s):  
J. Adam ◽  
A. Myat ◽  
I. Le Roux ◽  
M. Eddison ◽  
D. Henrique ◽  
...  

The sensory patches in the vertebrate inner ear are similar in function to the mechanosensory bristles of a fly, and consist of a similar set of cell types. If they are truly homologous structures, they should also develop by similar mechanisms. We examine the genesis of the neurons, hair cells and supporting cells that form the sensory patches in the inner ear of the chick. These all arise from the otic epithelium, and are produced normally even in otic epithelium cultured in isolation, confirming that their production is governed by mechanisms intrinsic to the epithelium. First, the neuronal sublineage becomes separate from the epithelial: between E2 and E3.5, neuroblasts delaminate from the otocyst. The neuroblasts then give rise to a mixture of neurons and neuroblasts, while the sensory epithelial cells diversify to form a mixture of hair cells and supporting cells. The epithelial patches where this occurs are marked from an early stage by uniform and maintained expression of the Notch ligand Serrate1. The Notch ligand Delta1 is also expressed, but transiently and in scattered cells: it is seen both early, during neuroblast segregation, where it appears to be in the nascent neuroblasts, and again later, in the ganglion and in differentiating sensory patches, where it appears to be in the nascent hair cells, disappearing as they mature. Delta-Notch-mediated lateral inhibition may thus act at each developmental branchpoint to drive neighbouring cells along different developmental pathways. Our findings indicate that the sensory patches of the vertebrate inner ear and the sensory bristles of a fly are generated by minor variations of the same basic developmental program, in which cell diversification driven by Delta-Notch and/or Serrate-Notch signalling plays a central part.


2013 ◽  
Vol 123 (8) ◽  
pp. 3577-3587 ◽  
Author(s):  
Lindsey A. May ◽  
Inga I. Kramarenko ◽  
Carlene S. Brandon ◽  
Christina Voelkel-Johnson ◽  
Soumen Roy ◽  
...  

1993 ◽  
Vol 71 (1-2) ◽  
pp. 98-105 ◽  
Author(s):  
Michael J. Mulroy ◽  
Scott A. Dempewolf ◽  
Sherri Curtis ◽  
Hisashi C. Iida

2020 ◽  
pp. 775-785
Author(s):  
L HE ◽  
J-Y GUO ◽  
K LIU ◽  
G-P WANG ◽  
S-S GONG

Sensorineural hearing loss and vertigo, resulting from lesions in the sensory epithelium of the inner ear, have a high incidence worldwide. The sensory epithelium of the inner ear may exhibit extreme degeneration and is transformed to flat epithelium (FE) in humans and mice with profound sensorineural hearing loss and/or vertigo. Various factors, including ototoxic drugs, noise exposure, aging, and genetic defects, can induce FE. Both hair cells and supporting cells are severely damaged in FE, and the normal cytoarchitecture of the sensory epithelium is replaced by a monolayer of very thin, flat cells of irregular contour. The pathophysiologic mechanism of FE is unclear but involves robust cell division. The cellular origin of flat cells in FE is heterogeneous; they may be transformed from supporting cells that have lost some features of supporting cells (dedifferentiation) or may have migrated from the flanking region. The epithelial-mesenchymal transition may play an important role in this process. The treatment of FE is challenging given the severe degeneration and loss of both hair cells and supporting cells. Cochlear implant or vestibular prosthesis implantation, gene therapy, and stem cell therapy show promise for the treatment of FE, although many challenges remain to be overcome.


Sign in / Sign up

Export Citation Format

Share Document