Localized Amyloidosis of the Larynx: Evidence for Light Chain Composition

1993 ◽  
Vol 102 (11) ◽  
pp. 884-889 ◽  
Author(s):  
Robert F. Troxler ◽  
Kelly Kane ◽  
Alan M. Berg ◽  
Gregory Grillone ◽  
Alan S. Cohen ◽  
...  

We report the biochemical characterization of amyloid fibrils from a patient with localized amyloidosis of the epiglottis and larynx. Biopsy specimens showed amorphous material consistent with amyloid deposits with a plasmacytic infiltrate. Both plasma cells and amyloid deposits stained positively by immunohistochemistry for κ light chains. Amyloid fibrils were isolated. The major constituent resolved as a 13 kd band was sequenced and found to be consistent with a κ1 light chain. A tryptic digest was carried out and 3 tryptic peptides were sequenced defining the first 45 residues of the protein and residues 110 through 119. Four amino acid substitutions were found, 3 of which have not been described previously. This study defines the immunoglobulin origin of amyloid deposits in localized amyloidosis. The benign nature of localized amyloidosis suggests that a localized clone of plasma cells producing an amyloidogenic light chain may represent the pathogenetic mechanism of this disease, which appears to be a form of plasma cell dyscrasia.

Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 948-953 ◽  
Author(s):  
Vittorio Perfetti ◽  
Simona Casarini ◽  
Giovanni Palladini ◽  
Maurizio Colli Vignarelli ◽  
Catherine Klersy ◽  
...  

Abstract Primary (AL) amyloidosis is a plasma cell dyscrasia characterized by extracellular deposition of monoclonal light-chain variable region (V) fragments in the form of amyloid fibrils. Light-chain amyloid is rare, and it is not fully understood why it occurs in only a fraction of patients with a circulating monoclonal component and why it typically associates with λ isotype and λVI family light-chain proteins. To provide insights into these issues, we obtained complete nucleotide sequences of monoclonal Vλ regions from 55 consecutive unselected cases of primary amyloidosis and the results were compared with the light-chain expression profile of polyclonal marrow plasma cells from 3 healthy donors (a total of 264 sequences). We demonstrated that: (1) the λIII family is the most frequently used both in amyloidosis (47%) and in polyclonality (43%); (2) both conditions are characterized by gene restriction; (3) a very skewed repertoire is a feature of amyloidosis, because just 2 germline genes belonging to the λIII and λVI families, namely 3r (22% of cases, λIII) and 6a (20%, λVI), contributed equally to encode 42% of amyloid Vλ regions; (4) these same 2 gene segments have a strong association with amyloidosis if their prevalences are compared with those in polyclonal conditions (3r, 8.3%,P = .024; 6a, 2.3%, P = .0008, χ2 test); (5) the Jλ2/3 segment, encoding the fourth framework region, appears to be slightly overrepresented in AL (83% versus 67%, P = .03), and this might be related to preferential Jλ2/3 rearrangement in amyloid (11 of 12 cases) versus polyclonal 3r light chains (13 of 22 cases). These findings demonstrate that Vλ-Jλ expression is more restricted in plasma cells from amyloidosis than from polyclonal bone marrow and identify 3r as a new disease-associated gene segment. Overusage of just 2 gene segments,3r and 6a, can thus account for the λ light-chain overrepresentation typical of this disorder.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 5007-5007 ◽  
Author(s):  
Andrew J Cowan ◽  
Martha Skinner ◽  
J. Mark Sloan ◽  
John L Berk ◽  
Carl J O'Hara ◽  
...  

Abstract Abstract 5007 Introduction: Amyloidosis is characterized by extracellular deposition of abnormal insoluble fibrillar proteins. The two most frequent systemic amyloidoses are the light-chain (AL amyloidosis) and familial transthyretin (ATTR) forms. Clinical presentations often vary between the two types. Macroglossia is viewed as pathognomic of AL amyloidosis, and has not previously been described in patients with hereditary TTR amyloidosis. Here, we describe two cases of systemic amyloidosis with macroglossia in which immuno-electron microscopy diagnosed ATTR in one and AL in the other. Case Presentations: A 61 year old woman presented initially to her general internist with weight loss, difficulty swallowing, and tongue numbness. Her clinical exam revealed macroglossia and peripheral neuropathy. Tongue and axillary lymph node biopsies demonstrated amyloid deposits by Congo red staining. There was no evidence of renal, cardiac or other vital organ involvement. She had no evidence of a plasma cell dyscrasia with negative serum and urine immunofixation electrophoresis, normal serum free light chain concentration and ratio as well as polytypic plasma cells in the bone marrow. Immuno-electron microscopy using gold-labeled antibodies was performed on the tongue biopsy. The fibrils were immunoreactive with anti-TTR but not anti-kappa, anti-lambda, or anti-AA antibodies. DNA sequencing identified a known amyloidogenic T60A TTR mutation in exon 3 of chromosome 18, confirming the diagnosis of ATTR with amyloidotic polyneuropathy and macroglossia. The second case involved a 59 year old man with renal insufficiency. He complained of fatigue, weight loss, and tongue swelling. Physical examination was significant for macroglossia and submandibular gland enlargement. Tongue biopsy demonstrated amyloid deposits by Congo red staining. As in the previous case, markers of plasma cell dyscrasia with clonal plasma cells in the bone marrow, blood, and urine were absent. Immuno-electron microscopy of the tongue biopsy documented antibody reactivity to lambda light chain and not TTR, kappa light chain or AA proteins, confirming the diagnosis of AL amyloidosis. He subsequently underwent treatment with high dose intravenous melphalan followed by stem cell transplantation achieving a good clinical response sustained for 2 years to date. Discussion: While macroglossia is thought to be pathognomonic of AL amyloidosis, we report a case of macroglossia with fibrillar ATTR amyloid deposits diagnosed by immuno-electron microscopy. This is contrasted with a clinical presentation consistent with AL in which routine laboratory testing failed to identify evidence of a plasma cell dyscrasia. In both cases, electron microscopy demonstrated immunoreactivity for the fibrils of a single pathogenic protein. The first case was confirmed by DNA sequencing, and the second had a typical response to anti-plasma cell chemotherapy, in spite of the lack of identifiable markers of disease. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 127 (19) ◽  
pp. 2275-2280 ◽  
Author(s):  
Brendan M. Weiss ◽  
Sandy W. Wong ◽  
Raymond L. Comenzo

Abstract Systemic immunoglobulin light chain (LC) amyloidosis (AL) is a potentially fatal disease caused by immunoglobulin LC produced by clonal plasma cells. These LC form both toxic oligomers and amyloid deposits disrupting vital organ function. Despite reduction of LC by chemotherapy, the restoration of organ function is highly variable and often incomplete. Organ damage remains the major source of mortality and morbidity in AL. This review focuses on the challenges posed by emerging therapies that may limit the toxicity of LC and improve organ function by accelerating the resorption of amyloid deposits.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Sadichhya Lohani ◽  
Emily Schuiteman ◽  
Lohit Garg ◽  
Dhiraj Yadav ◽  
Sami Zarouk

Hereditary amyloidoses are rare and pose a diagnostic challenge. We report a case of hereditary amyloidosis associated with apolipoprotein C-II deposition in a 61-year-old female presenting with renal failure and nephrotic syndrome misdiagnosed as light chain amyloidosis. Renal biopsy was consistent with amyloidosis on microscopy; however, immunofluorescence was inconclusive for the type of amyloid protein. Monoclonal gammopathy evaluation revealed kappa light chain. Bone marrow biopsy revealed minimal involvement with amyloidosis with kappa monotypic plasma cells on flow cytometry. She was started on chemotherapy for light chain amyloidosis. She was referred to the Mayo clinic where laser microdissection and liquid chromatography mass spectrometry detected high levels of apolipoprotein C-II, making a definitive diagnosis. Apolipoprotein C-II is a component of very low-density lipoprotein and aggregates in lipid-free conditions to form amyloid fibrils. The identification of apolipoprotein C-II as the cause of amyloidosis cannot be solely made with routine microscopy or immunofluorescence. Further evaluation of biopsy specimens with laser microdissection and mass spectrometry and DNA sequencing of exons should be done routinely in patients with amyloidoses for definitive diagnosis. Our case highlights the importance of determining the subtype of amyloidosis that is critical for avoiding unnecessary therapy such as chemotherapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4906-4906
Author(s):  
Marjory Charlot ◽  
David C. Seldin ◽  
Carl O'Hara ◽  
Martha Skinner ◽  
Vaishali Sanchorawala

Abstract Abstract 4906 AL amyloidosis is characterized by widespread, progressive deposition of fibrillar amyloid protein derived from monoclonal immunoglobulin light chains, leading to organ failure and death. This disease is typically systemic, however, it can occur as a localized form. In localized amyloidosis, the deposits occur near the site of synthesis of the precursor protein and in some cases, plasma cells have been demonstrated histologically adjacent to the deposits. For unknown reasons, the tracheobronchial tree is the most common site for localized AL amyloidosis. Localized AL amyloidosis of the breast is a rare entity that has been described in the literature in isolated case reports. It can present as a palpable mass or as calcifications on routine screening mammography. We report here a case series of seven women (median age 63 years, range 46 to75) seen and evaluated at Boston University Medical Center from 1990-2008. We evaluated 1502 new patients with AL amyloidosis in this time period, making the incidence of localized AL amyloidosis of the breast to be 0.5% at a single referral center. All seven patients had abnormal screening mammography with calcifications, and biopsies that revealed Congo red positive amyloid deposits. Histologically, the amyloid deposits appeared as amorphous material in the stroma around the ducts and lobules in most patients; one patient had amyloid deposits in the ducts only, but not in the stroma. None of the patients had clinical or laboratory evidence of other organ involvement, all had negative Congo red staining of an abdominal fat pad aspirate, and all had a negative work up for a plasma cell dyscrasia or circulating paraprotein. The patients were treated with local excision of the regions of calcification or lumpectomy. Three out of seven patients underwent routine follow up within 6-12 months from the time of diagnosis with no evidence of disease recurrence or progression to systemic AL amyloidosis. One out of seven patients had bilateral and recurrent amyloidosis of the breasts and was found to have an associated stage I invasive ductal adenocarcinoma that was treated with lumpectomy and radiation. In summary, breast amyloidosis is rare, is not associated with a systemic plasma cell dyscrasia or amyloidosis in other organs, and can be treated surgically. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (10) ◽  
pp. 3801-3807 ◽  
Author(s):  
Roshini S. Abraham ◽  
Susan M. Geyer ◽  
Tammy L. Price-Troska ◽  
Cristine Allmer ◽  
Robert A. Kyle ◽  
...  

AbstractLight chain–associated amyloidosis (AL) is a plasma cell dyscrasia in which the secreted monoclonal immunoglobulin (Ig) light chains form amyloid fibrils. There is considerable heterogeneity in clinical presentation, and prognosis of the disease relates to the severity of organ dysfunction induced by amyloid deposits. The mechanisms by which the amyloid fibrils are deposited as well as the predilection for specific organ sites have not been clearly elucidated. This study characterizes the repertoire of immunoglobulin light chain variable genes used by the clonal B cell in AL amyloid patients, and the association of light chain variable region (VL) genes with clinical presentation and outcome is assessed in 58 (32 λ and 26 κ) patients. A preferential use of VL germ-line genes was noted for both AL κ and λ patients. There was a significant correlation between the use of the Vλ VI germ-line donor, 6a, and renal involvement as well as the Vλ III gene, 3r, with soft-tissue AL. The use of a biased VL gene repertoire also correlated with clinical outcome, revealing important trends for predicting prognosis. The use of Vλ II germ-line genes was associated with cardiac amyloidosis and affected survival adversely. The presence of multiple myeloma also correlated with a poor prognosis. The presence of renal disease, on the other hand, was associated with improved survival. Therefore, identification of the clonal VL gene in AL has important implications in determining clinical outcome.


1999 ◽  
Vol 19 (2_suppl) ◽  
pp. 413-416 ◽  
Author(s):  
Takehiko Wada ◽  
Toshio Miyata ◽  
Hideto Sakai ◽  
Kiyoshi Kurokawa

Dialysis-related amyloidosis (DRA) is characterized by amyloid deposition mainly in bone and joint structures, presenting as carpal tunnel syndrome, destructive arthropathy, and subchondral bone erosions and cysts. β2-microglobulin has been demonstrated to be a major constituent of amyloid fibrils. DRA occurs not only in patients undergoing long-term hemodialysis, but also in patients undergoing continuous ambulatory peritoneal dialysis. The incidence of this complication increases with the duration of dialytic therapy and the age of the patient. While a definitive diagnosis of DRA can be made only by histological findings, various imaging techniques often support diagnosis. The molecular pathogenesis of this complication remains unknown. Recent studies have, however, suggested a pathogenic role of a new modification of β2-microglobulin in amyloid fibrils -that is, the advanced glycation end-products (AGEs) formed with carbonyl compounds derived from autoxidation of both carbohydrates and lipids (“carbonyl stress”). Therapy for DRA is limited to symptomatic approaches and surgical removal of amyloid deposits. High-flux biocompatible dialysis membranes could be used to delay DRA development.


2020 ◽  
Vol 295 (49) ◽  
pp. 16572-16584
Author(s):  
Francesca Lavatelli ◽  
Giulia Mazzini ◽  
Stefano Ricagno ◽  
Federica Iavarone ◽  
Paola Rognoni ◽  
...  

Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.


2018 ◽  
Author(s):  
Paolo Swuec ◽  
Francesca Lavatelli ◽  
Masayoshi Tasaki ◽  
Cristina Paissoni ◽  
Paola Rognoni ◽  
...  

Systemic light chain (AL) amyloidosis is a life-threatening disease caused by aggregation and deposition of monoclonal immunoglobulin light chains (LC) in target organs. Severity of heart involvement is the most important factor determining prognosis. Here, we report the 4.0 Å resolution cryo-electron microscopy (cryo-EM) map and structural model of amyloid fibrils extracted from the heart of an AL patient affected by severe amyloid cardiomyopathy. The fibrils are composed of one asymmetric protofilament, showing typical 4.9 Å stacking and parallel cross-β architecture. Two distinct polypeptide stretches belonging to the LC variable domain (Vl) could be modelled in the density (total of 77 residues), stressing the role of the Vl domain in fibril assembly and LC aggregation. Despite high levels of Vl sequence variability, residues stabilising the observed fibril core are conserved through several Vl domains, highlighting structural motifs that may be common to misfolded LCs. Our data shed first light on the architecture of life-threatening LC amyloid deposits, and provide a rationale for correlating LC amino acid sequences and fibril structures.


2021 ◽  
Vol 14 (4) ◽  
pp. e239478
Author(s):  
Paula Evelyn Beatty ◽  
Lisa Killion ◽  
Johnny Mc Hugh ◽  
Ann-Marie Tobin

A 69-year-old woman presented with an 18-month history of recurrent bruising of the eyelids. She was otherwise asymptomatic and systems review was unremarkable. On examination, she had peri-orbital purpura and waxy papules at the inner canthus of both eyes. Macroglossia was also noted. Subcutaneous abdominal biopsy identified amorphous material in the dermis that stained positive for Congo red, with apple-green birefringence seen under polarised microscopy. Immunohistochemistry demonstrated antibodies against lambda light chains. Bone marrow biopsy identified further deposits of immunoglobulin light chain amyloid and a clonal infiltrate with 10%–20% plasma cells, confirming amyloidosis secondary to multiple myeloma. Iodine-123-labelled serum amyloid protein scintigraphy showed no abnormal uptake, thereby excluding significant amyloid deposits in the liver, spleen or kidneys. Cardiac MRI was consistent with early amyloid infiltration. We highlight the importance of dermatological manifestations in amyloidosis, to allow for early diagnosis, potentially limiting end organ involvement.


Sign in / Sign up

Export Citation Format

Share Document