scholarly journals Community Benefits or Community Bribes? An Experimental Analysis of Strategies for Managing Community Perceptions of Bribery Surrounding the Siting of Renewable Energy Projects

2016 ◽  
Vol 49 (1) ◽  
pp. 59-83 ◽  
Author(s):  
Benjamin J.A. Walker ◽  
Duncan Russel ◽  
Tim Kurz

The provision of financial incentives to local communities by energy developers has attracted cynicism across many localities, with some suggesting such community benefits are akin to “bribery.” The current study used an experimental design embedded within a community postal survey to explore whether potentially damaging effects of bribery rhetoric upon local support for a wind farm can be overcome through (a) portraying community benefits as a policy requirement (rather than a discretionary gesture by developers), and/or (b) the deployment of different discursive strategies by developers to manage their stake in the outcome of the project. Participants told about community benefits as being a policy requirement showed significantly higher support for the wind farm, an effect that was mediated by heightened perceptions of individually and collectively favorable outcomes from the development. We discuss our results in relation to their implications for government policy approaches to promoting renewable energy supply.

2020 ◽  
Vol 12 (13) ◽  
pp. 5231 ◽  
Author(s):  
Sahand Somi ◽  
Nima Gerami Seresht ◽  
Aminah Robinson Fayek

Construction projects are highly risk-prone due to both internal factors (e.g., organizational, contractual, project, etc.) and external factors (e.g., environmental, economic, political, etc.). Construction risks can thus have a direct or indirect impact on project objectives, such as cost, time, safety, and quality. Identification of these risks is crucial in order to fulfill project objectives. Many tools and techniques have been proposed for risk identification, including literature review, questionnaire surveys, and expert interviews. However, the majority of these approaches are highly reliant on expert knowledge or prior knowledge of the project. Therefore, the application of such tools and techniques in risk identification for renewable energy projects (e.g., wind farm and solar power plant projects) is challenging due to their novelty and the limited availability of historical data or literature. This paper addresses these challenges by introducing a new risk identification framework for renewable energy projects, which combines case-based reasoning (CBR) with fuzzy logic. CBR helps to solve problems related to novel projects (e.g., renewable energy projects) based on their similarities to existing, well-studied projects (e.g., conventional energy projects). CBR addresses the issue of data scarcity by comparing novel types of construction projects to other well-studied project types and using the similarities between these two sets of projects to solve the different problems associated with novel types of construction projects, such as risk identification of renewable energy projects. Moreover, the integration of fuzzy logic with CBR, to develop fuzzy case-based reasoning (FCBR), increases the applicability of CBR in construction by capturing the subjective uncertainty that exists in construction-related problems. The applicability of the proposed framework was tested on a case study of an onshore wind farm project. The objectives of this paper are to introduce a novel framework for risk identification of renewable energy projects and to identify the risks associated with the construction of onshore wind farm projects at the work package level. The results of this paper will help to improve the risk management of renewable energy projects during the construction phase.


2018 ◽  
Vol 33 (3) ◽  
pp. 269-286 ◽  
Author(s):  
Yvonne Rydin ◽  
Lucy Natarajan ◽  
Maria Lee ◽  
Simon Lock

Government policy in the UK, as in many countries, sees investment in infrastructure projects – particularly large ones – as a key means of supporting the national economy. But where does this leave local economic interests in the loci of these projects? And how does the regulation of such projects handle these interests? These are the questions addressed by this paper in the context of renewable energy projects that are regulated by the Nationally Significant Infrastructure Projects regime. Drawing on original research into the regulation of 12 projects – and using thematic analysis of key documents and focus groups with local participants – the analysis highlights the limited understanding of the local economy presented, the challenges that local businesses face in participating and the partial protection offered to them. It concludes by proposing agendas for reforms and future research.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1360
Author(s):  
Andres B. Espejo ◽  
Maria Catalina Becerra-Leal ◽  
Naikoa Aguilar-Amuchastegui

Reducing deforestation and forest degradation presents a climate-change mitigation opportunity that is critical to meeting the Paris Agreement goals, and to achieving reductions in the atmospheric concentrations of greenhouse gases (GHGs). Reducing Emissions from Deforestation and Forest Degradation (REDD) provides developing countries with results-based financial incentives for reducing deforestation and forest degradation through either non-market payments (payments without generation of carbon credits), or market-based mechanisms (carbon credits). REDD credits have been recently accepted to be used in offsetting programs (e.g., CORSIA) and are being considered under Article 6. However, various publications have questioned whether carbon credits from REDD should be accepted under market-based mechanisms, and have identified issues regarding their environmental integrity and their ability to offset emissions from other sectors. In recent years, REDD implementation has moved from the project level to the national or subnational (jurisdictional) level, and is addressing some of the concerns that have been raised for project-level interventions regarding the robustness of baselines and leakage, for example. In this paper we compare the environmental integrity of credits from REDD programs with that from on-grid renewable energy projects by examining aspects related to permanence, additionality, baselines, uncertainty, and leakage. We show that the environmental integrity of emission reductions sourced from REDD programs has unique strengths, and that those sourced from renewable energy projects have weaknesses of their own. Probably due to a lack of understanding of the respective weaknesses and strengths of these two sources of credits, the emission reductions from REDD programs have been historically questioned and subjected to a level of scrutiny that has not been made with emission reductions from other sectors, such as renewable energy projects. Recognizing the strengths and weaknesses of emission reductions from both types should help decision makers and carbon standards recognize the high quality of emission reductions from REDD programs, and rationalize the current requirements or restrictions imposed.


Author(s):  
Alan P. Crowle

Large energy developments are taking place near shore, in locations around the world, including LNG jetties, oil production in shallow water and renewable energy projects. Crane vessels of all sizes are required to install the component parts for these projects. This paper explains current techniques and the design requirements to carry out the lifting of large units required for shallow water installations. Recent developments have seen the introduction of new vessels for offshore wind farm installation and their features are discussed.


2017 ◽  
Vol 75 ◽  
pp. 354-367 ◽  
Author(s):  
Dragan Loncar ◽  
Ivan Milovanovic ◽  
Biljana Rakic ◽  
Tamara Radjenovic

2019 ◽  
Vol 3 (1) ◽  
pp. 1-12
Author(s):  
Lauren K. D’Souza ◽  
William L. Ascher ◽  
Tanja Srebotnjak

Native American reservations are among the most economically disadvantaged regions in the United States; lacking access to economic and educational opportunities that are exacerbated by “energy insecurity” due to insufficient connectivity to the electric grid and power outages. Local renewable energy sources such as wind, solar, and biomass offer energy alternatives but their implementation encounters barriers such as lack of financing, infrastructure, and expertise, as well as divergent attitudes among tribal leaders. Biomass, in particular, could be a source of stable base-load power that is abundant and scalable in many rural communities. This case study examines the feasibility of a biomass energy plant on the Cocopah reservation in southwestern Arizona. It considers feedstock availability, cost and energy content, technology options, nameplate capacity, discount and interest rates, construction, operation and maintenance (O&M) costs, and alternative investment options. This study finds that at current electricity prices and based on typical costs for fuel, O&M over 30 years, none of the tested scenarios is presently cost-effective on a net present value (NPV) basis when compared with an alternative investment yielding annual returns of 3% or higher. The technology most likely to be economically viable and suitable for remote, rural contexts—a combustion stoker—resulted in a levelized costs of energy (LCOE) ranging from US$0.056 to 0.147/kWh. The most favorable scenario is a combustion stoker with an estimated NPV of US$4,791,243. The NPV of the corresponding alternative investment is US$7,123,380. However, if the tribes were able to secure a zero-interest loan to finance the plant’s installation cost, the project would be on par with the alternative investment. Even if this were the case, the scenario still relies on some of the most optimistic assumptions for the biomass-to-power plant and excludes abatement costs for air emissions. The study thus concludes that at present small-scale, biomass-to-energy projects require a mix of favorable market and local conditions as well as appropriate policy support to make biomass energy projects a cost-competitive source of stable, alternative energy for remote rural tribal communities that can provide greater tribal sovereignty and economic opportunities.


2021 ◽  
Vol 9 (8) ◽  
pp. 810
Author(s):  
Francisco X. Correia da Fonseca ◽  
Luís Amaral ◽  
Paulo Chainho

Ocean energy is a relevant source of clean renewable energy, and as it is still facing challenges related to its above grid-parity costs, tariffs intended to support in a structured and coherent way are of great relevance and potential impact. The logistics and marine operations required for installing and maintaining these systems are major cost drivers of marine renewable energy projects. Planning the logistics of marine energy projects is a highly complex and intertwined process, and to date, limited advances have been made in the development of decision support tools suitable for ocean energy farm design. The present paper describes the methodology of a novel, opensource, logistic and marine operation planning tool, integrated within DTOceanPlus suite of design tools, and responsible for producing logistic solutions comprised of optimal selections of vessels, port terminals, equipment, as well as operation plans, for ocean energy projects. Infrastructure selection logistic functions were developed to select vessels, ports, and equipment for specific projects. A statistical weather window model was developed to estimate operation delays due to weather. A vessel charter rate modeling approach, based on an in-house vessel database and industry experience, is described in detail. The overall operation assumptions and underlying operating principles of the statistical weather window model, maritime infrastructure selection algorithms, and cost modeling strategies are presented. Tests performed for a case study based a theoretical floating wave energy converter produced results in good agreement with reality.


Sign in / Sign up

Export Citation Format

Share Document