The Effects of Cognitive and Visual Workload on Peripheral Detection in the Detection Response Task

Author(s):  
Wim van Winsum

Objective: The independent effects of cognitive and visual load on visual Detection Response Task (vDRT) reaction times were studied in a driving simulator by performing a backwards counting task and a simple driving task that required continuous focused visual attention to the forward view of the road. The study aimed to unravel the attentional processes underlying the Detection Response Task effects. Background: The claim of previous studies that performance degradation on the vDRT is due to a general interference instead of visual tunneling was challenged in this experiment. Method: vDRT stimulus eccentricity and stimulus conspicuity were applied as within-subject factors. Results: Increased cognitive load and visual load both resulted in increased response times (RTs) on the vDRT. Cognitive load increased RT but revealed no task by stimulus eccentricity interaction. However, effects of visual load on RT showed a strong task by stimulus eccentricity interaction under conditions of low stimulus conspicuity. Also, more experienced drivers performed better on the vDRT while driving. Conclusion: This was seen as evidence for a differential effect of cognitive and visual workload. The results supported the tunnel vision model for visual workload, where the sensitivity of the peripheral visual field reduced as a function of visual load. However, the results supported the general interference model for cognitive workload. Application: This has implications for the diagnosticity of the vDRT: The pattern of results differentiated between visual task load and cognitive task load. It also has implications for theory development and workload measurement for different types of tasks.

Author(s):  
Wim van Winsum

Objective:In a driving simulator, a backwards counting task, a simple steering task, and a fully autonomous driving task were applied to study the independent effects of cognitive load, visual-cognitive-manual load, and optic flow on visual detection response task (vDRT) performance. The study was designed to increase the understanding of the processes underlying vDRT effects.Background:The tunnel vision effect induced by a “steering while driving” task found in a previous study was investigated further in this experiment.Method:Stimulus eccentricity and conspicuity were applied as within-subjects factors.Results:Cognitive load, visual-cognitive-manual load, and optic flow all resulted in increased vDRT response time (RT). Cognitive load and visual-cognitive-manual load both increased RT but revealed no interaction of task by stimulus eccentricity. However, optic flow resulted in a task by stimulus eccentricity interaction on vDRT RT that was evidence of a tunnel vision effect.Conclusion:The results suggested that optic flow may be a factor responsible for tunnel vision while driving, although this does not support the tunnel vision model because it is unrelated to workload. However, the results supported the general interference model for cognitive workload.Application:The results have implications for the diagnosticity of the vDRT. During driving tasks, tunnel vision effects may occur as a result of optic flow, and these effects are unrelated to workload.


Author(s):  
Francesco N. Biondi ◽  
Balakumar Balasingam ◽  
Prathamesh Ayare

Objective This study investigates the cost of detection response task performance on cognitive load. Background Measuring system operator’s cognitive load is a foremost challenge in human factors and ergonomics. The detection response task is a standardized measure of cognitive load. It is hypothesized that, given its simple reaction time structure, it has no cost on cognitive load. We set out to test this hypothesis by utilizing pupil diameter as an alternative metric of cognitive load. Method Twenty-eight volunteers completed one of four experimental tasks with increasing levels of cognitive demand (control, 0-back, 1-back, and 2-back) with or without concurrent DRT performance. Pupil diameter was selected as nonintrusive metric of cognitive load. Self-reported workload was also recorded. Results A significant main effect of DRT presence was found for pupil diameter and self-reported workload. Larger pupil diameter was found when the n-back task was performed concurrently with the DRT, compared to no-DRT conditions. Consistent results were found for mental workload ratings and n-back performance. Conclusion Results indicate that DRT performance produced an added cost on cognitive load. The magnitude of the change in pupil diameter was comparable to that observed when transitioning from a condition of low task load to one where the 2-back was performed. The significant increase in cognitive load accompanying DRT performance was also reflected in higher self-reported workload. Application DRT is a valuable tool to measure operator’s cognitive load. However, these results advise caution when discounting it as cost-free metric with no added burden on operator’s cognitive resources.


2020 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Ramtin Zargari Marandi ◽  
Camilla Ann Fjelsted ◽  
Iris Hrustanovic ◽  
Rikke Dan Olesen ◽  
Parisa Gazerani

The affective dimension of pain contributes to pain perception. Cognitive load may influence pain-related feelings. Eye tracking has proven useful for detecting cognitive load effects objectively by using relevant eye movement characteristics. In this study, we investigated whether eye movement characteristics differ in response to pain-related feelings in the presence of low and high cognitive loads. A set of validated, control, and pain-related sounds were applied to provoke pain-related feelings. Twelve healthy young participants (six females) performed a cognitive task at two load levels, once with the control and once with pain-related sounds in a randomized order. During the tasks, eye movements and task performance were recorded. Afterwards, the participants were asked to fill out questionnaires on their pain perception in response to the applied cognitive loads. Our findings indicate that an increased cognitive load was associated with a decreased saccade peak velocity, saccade frequency, and fixation frequency, as well as an increased fixation duration and pupil dilation range. Among the oculometrics, pain-related feelings were reflected only in the pupillary responses to a low cognitive load. The performance and perceived cognitive load decreased and increased, respectively, with the task load level and were not influenced by the pain-related sounds. Pain-related feelings were lower when performing the task compared with when no task was being performed in an independent group of participants. This might be due to the cognitive engagement during the task. This study demonstrated that cognitive processing could moderate the feelings associated with pain perception.


2018 ◽  
pp. 253-254
Author(s):  
Antonia S. Conti ◽  
Moritz Späth ◽  
Klaus Bengler

Author(s):  
Conner J. Motzkus ◽  
Douglas J. Getty ◽  
Andrea Campos ◽  
Joel M. Cooper ◽  
David L. Strayer

The ISO 17488 standard Detection Response Task (DRT) has been validated as an effective tool for measuring fluctuations in cognitive workload while driving and performing secondary tasks. This research evaluated the possibility of consolidating a dual stimulus DRT to a single remote LED stimulus to concurrently measure visual and cognitive demand. Hit rate and reaction times to a remote LED stimulus and an ISO standard vibrotactor stimulus were compared for three in-vehicles tasks: a single task baseline, a cognitively demanding task, and a visually demanding task. Analyses showed that the remote LED and vibrotactor were equally sensitive to cognitive load, while the remote LED was more sensitive to visual load. We suggest the remote LED DRT system serves as a cost-effective, practical, sensitive method to concurrently assess cognitive and visual demand.


Author(s):  
Justin G. Hollands ◽  
Tzvi Spivak ◽  
Eric W. Kramkowski

Objective: We sought to determine the influence of message presentation rate (MPR) and sensory modality on soldier cognitive load. Background: Soldiers commonly communicate tactical information by radio. The Canadian Army is equipping soldiers with a battle management system (BMS), which also allows them to communicate by text. Method: We varied presentation modality (auditory vs. visual) and MPR (fast or slow) in an experiment involving a tactical scenario. Participants (soldiers) received messages and periodically provided situation reports to higher level command, and the scored reports were used to provide a measure of situation awareness (SA). The detection response task (DRT) and NASA-TLX were used to measure cognitive load. Results: The fast MPR reduced DRT accuracy and increased response times relative to slow MPR. The NASA-TLX results also showed higher subjective workload ratings for several subscales with fast MPR. Messages presented visually produced greater cognitive load, with slower DRT response times for the visual than the auditory condition. SA scores were higher with slower MPR and auditory presentation. There was no statistical interaction of presentation modality and rate for any measure. Conclusion: Fast MPR and visual presentation increased cognitive load and degraded SA. Application: These findings show that the DRT can be used to measure workload effectively in a tactical military context and that the method of information presentation affects how soldiers process information in a BMS.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingwan Xue ◽  
Xuedong Yan ◽  
Yi Zhao ◽  
Yuting Zhang

A dramatic increase in talking on the phone whilst driving has been seen over the past decades, which posed a significant safety threat on the whole society consequently. Studies on the topic regarding the effect of phone conversations on drivers’ driving performances have never come to a cease, especially on the studies of drivers’ brake response times. However, few studies focus on the relationship between situation criticality and the effect of cognitive load on drivers’ brake responses. To better understand it, a driving simulator experiment with two braking scenarios corresponding to two levels of situation criticality was conducted in this study. Participants were asked to follow a lead vehicle as they normally did and answer arithmetic problems (simple and complex) in three phone modes (baseline, hands-free, and handheld) in the meantime. Drivers’ brake response times to the lead vehicle under five conditions were collected and fitted in accumulator models, in which visual looming and brake lights onset were included as the sensory cues. Results demonstrated that the previously proposed mechanistically explicit simulation model was able to predict drivers’ brake response times on different levels of cognitive load and the increased effect of cognitive load on drivers’ brake response times in less critical situations was demonstrated in this paper as well.


Sign in / Sign up

Export Citation Format

Share Document