scholarly journals Research and application of weak fault diagnosis method based on asymmetric potential stochastic resonance

2019 ◽  
Vol 52 (5-6) ◽  
pp. 625-633 ◽  
Author(s):  
Zhixing Li ◽  
Boqiang Shi ◽  
Xueping Ren ◽  
Wenyan Zhu

Because fault characteristics are often difficult to extract from a strong noise background, it is essential for mechanical fault diagnosis to extract a weak characteristic signal with a very small signal-to-noise ratio from a noisy interference. Therefore, this paper proposes a new method for diagnosing weak faults in asymmetric potential stochastic resonance. Compared with the existing methods, the asymmetric potential stochastic resonance method not only has characteristics common to the symmetric potential stochastic resonance, but can also change the inclination of the barrier and slope of the wall to obtain a better model structure. The proposed method solves the local adjustment problem of the existing method from the perspective of potential structure and optimizes the asymmetric system shape to better target frequency detection during much interference from noise. After simulation, a bearing failure test, and rolling mill gearbox bearing failure experiments, we concluded that the asymmetric potential stochastic resonance detection technology can effectively identify faults. Compared with the symmetric potential stochastic resonance method, the proposed method has better recognition.

2020 ◽  
Vol 53 (5-6) ◽  
pp. 767-777
Author(s):  
Xueping Ren ◽  
Jian Kang ◽  
Zhixing Li ◽  
Jianguo Wang

The early fault signal of rolling bearings is very weak, and when analyzed under strong background noise, the traditional signal processing method is not ideal. To extract fault characteristic information more clearly, the second-order UCPSR method is applied to the early fault diagnosis of rolling bearings. The continuous potential function itself is a continuous sinusoidal function. The particle transition is smooth and the output is better. Because of its three parameters, the potential structure is more comprehensive and has more abundant characteristics. When the periodic signal, noise and potential function are the best match, the system exhibits better denoise compared to that of other methods. This paper discusses the influence of potential parameters on the motion state of particles between potential wells in combination with the potential parameter variation diagrams discussed. Then, the formula of output signal-to-noise ratio is derived to further study the relationships among potential parameters, and then the ant colony algorithm is used to optimize potential parameters in order to obtain the optimal output signal-to-noise ratio. Finally, an early weak fault diagnosis method for bearings based on the underdamped continuous potential stochastic resonance model is proposed. Through simulation and experimental verification, the underdamped continuous potential stochastic resonance results are compared with those of the time-delayed feedback stochastic resonance method, which proves the validity of the underdamped continuous potential stochastic resonance method.


Author(s):  
Zhixing Li ◽  
Xiandong Liu ◽  
Tian He ◽  
Yingchun Shan

The vibration feature of weak gear fault is often covered in strong background noise, which makes it necessary to establish weak feature enhancement methods. Among the enhancement methods, stochastic resonance (SR) has the unique advantage of transferring noise energy to weak signals and has a great application prospection in weak signal extraction. But the traditional SR potential model cannot form a richer potential structure and may lead to system instability when the noise is too great. To overcome these shortcomings, the article presents a periodic potential underdamping stochastic resonance (PPUSR) method after investigating the potential function and system signal-to-noise ratio (SNR). In addition, system parameters are further optimized by using ant colony algorithm. Through simulation and gear experiments, the effectiveness of the proposed method was verified. We concluded that compared with the traditional underdamped stochastic resonance (TUSR) method, the PPUSR method had a higher recognition degree and better frequency response capability.


2020 ◽  
Author(s):  
Liu ZiWen ◽  
Bao JinSong ◽  
Xiao Lei ◽  
Wang BoBo

Abstract In engineering applications, the fault signal of rotating elements is easily submerged in the background noise. In order to solve this problem, a rotating body fault diagnosis method based on stochastic resonance with triple-well potential system of genetic algorithm is proposed. In this method, the signal-to-noise ratio(SNR) of the Triple-well potential system is used as the fitness function of the genetic algorithm, and several parameters of the system are optimized at the same time, which effectively improves the feature extraction effect of the weak fault of the rotating body. The results of simulation and engineering experiments show that this method has better detection effect than bistable stochastic resonance method, and can effectively detect the fault signal submerged by noise, which has a good engineering application prospect.


2014 ◽  
Vol 548-549 ◽  
pp. 374-378 ◽  
Author(s):  
Xiang Huan Cui ◽  
Yong Ying Jiang ◽  
Hai Feng Gao ◽  
Jia Wei Xiang

The background noise makes it difficult to detect incipient faults through vibration analysis. The stochastic resonance (SR) method can be applied to enhance the signal-to-noise ratio (SNR) of a system output using the unavoidable environmental noise. The parameters selection is the most important to generate SR. The proposed fault diagnosis method utilizes the artificial bee colony algorithm to find the best parameters of SR so as to match input signals and detect faults. The performance of the proposed method is confirmed as compared to the fixed parameters method.


2014 ◽  
Vol 618 ◽  
pp. 458-462
Author(s):  
Gang Yu ◽  
Ye Chen

This paper proposes an adaptive stochastic resonance (SR) method based on alpha stable distribution for early fault detection of rotating machinery. By analyzing the SR characteristic of the impact signal based on sliding windows, SR can improve the signal to noise ratio and is suitable for early fault detection of rotating machinery. Alpha stable distribution is an effective tool for characterizing impact signals, therefore parameter alpha can be used as the evaluating parameter of SR. Through simulation study, the effectiveness of the proposed method has been verified.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 965 ◽  
Author(s):  
Lu Lu ◽  
Yu Yuan ◽  
Heng Wang ◽  
Xing Zhao ◽  
Jianjie Zheng

Vibration signals are used to diagnosis faults of the rolling bearing which is symmetric structure. Stochastic resonance (SR) has been widely applied in weak signal feature extraction in recent years. It can utilize noise and enhance weak signals. However, the traditional SR method has poor performance, and it is difficult to determine parameters of SR. Therefore, a new second-order tristable SR method (STSR) based on a new potential combining the classical bistable potential with Woods-Saxon potential is proposed in this paper. Firstly, the envelope signal of rolling bearings is the input signal of STSR. Then, the output of signal-to-noise ratio (SNR) is used as the fitness function of the Seeker Optimization Algorithm (SOA) in order to optimize the parameters of SR. Finally, the optimal parameters are used to set the STSR system in order to enhance and extract weak signals of rolling bearings. Simulated and experimental signals are used to demonstrate the effectiveness of STSR. The diagnosis results show that the proposed STSR method can obtain higher output SNR and better filtering performance than the traditional SR methods. It provides a new idea for fault diagnosis of rotating machinery.


2019 ◽  
Vol 26 (7) ◽  
pp. 1910-1920 ◽  
Author(s):  
Jin-tian Yin ◽  
Yong-fang Xie ◽  
Zhi-wen Chen ◽  
Tao Peng ◽  
Chun-hua Yang

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Si-Hai Zhao ◽  
Jiang-Ye Xu ◽  
Yu-Xiao Liu ◽  
Ze-Xing Zhao ◽  
Zhong-Shun Qin

This paper proposes a new system whose potential function is with three types of asymmetric potential wells, driven by trichotomous noise. Firstly, the three types of asymmetric bistable system are described in detail, and the changes of asymmetric bistable system potential function under different asymmetric factors are analyzed. Secondly, the effect of potential function parameters, asymmetric factor α , noise intensity D, and the probability of particle transition q is discussed, using numerical simulation. The detection effects of traditional symmetric SR and three types of asymmetric SR are observed and compared under the driving of trichotomous noise and periodic signals. The mean of signal-to-noise ratio gain is the indicator of the system's effectiveness on enhancing weak signal. The results indicate that it can make the detection effect of the asymmetric system better than that of the traditional bistable system by adjusting the parameters of the asymmetric stochastic resonance system and trichotomous noise.


Sign in / Sign up

Export Citation Format

Share Document