Computer Aided Design of Systems at Functional Level

1989 ◽  
Vol 26 (1-2) ◽  
pp. 156-161 ◽  
Author(s):  
N. D. Deans ◽  
S. J. Chalmers ◽  
C. Paterson ◽  
A. Jutagir

Existing CAD tools are largely used to examine and verify the behaviour of circuits already designed by engineers. This paper describes high-level behavioural modelling facilities developed to simulate algorithmic state machines and digital signal processing systems and so confirm their behaviour before detailed circuit design work is undertaken.

From time to time the Royal Society organizes meetings for the discussion of some new development in engineering and applied science. It seemed possible to the organizers of this meeting that it would be profitable to bring together workers in industry and in the universities to discuss some aspect of computer-aided design. As you will see we have chosen the application of computer aids to mechanical engineering design and manufacture. This restriction to mechanical engineering was deliberate, partly because the application of computer aids to mechanical engineering design is somewhat behind similar activities in electrical and civil engineering. Another reason is that the development of such applications has reached a particularly interesting stage, and it is now perhaps appropriate to review progress and to discuss the directions in which future research should proceed. Although some examples of computer-aided design in mechanical engineering can be found from the earliest days of computing, the development really started in the late fifties with early experiments in the use of graphic displays and with the introduction of multi-access computing. Some may date the beginning of the developments which we are going to discuss today, from the work at M. I. T. on automated programmed drawing started in 1958. This has led to a concentration of effort on graphics and computer-aided drafting. Much research has been done on the mathematical description of curves, surfaces and volumes in a form suitable for engineering design. Work has been done on the automatic dimensioning of drawings, hidden line removal, the prob­lems of lofting, etc.


Author(s):  
Thomas R. Langerak ◽  
Joris S. M. Vergeest

Modeling with freeform features has become the standard in computer-aided design. Features offer a high-level approach to modeling shapes. However, in most commercial modeling packages, only a static set of freeform features is available. A new method for user-driven feature definition is presented, as well as a method to instantiate these user-defined features on a target surface. We propose the concept of a dual environment, in which the definition of a feature is maintained parallel to its instance on a target surface. This dual environment enables dynamic feature modeling, in which the user is able to change the definition of instantiated features on-the-fly.


Mechanik ◽  
2017 ◽  
Vol 90 (8-9) ◽  
pp. 805-807
Author(s):  
Izabela Rojek

The article presents the computer aided design methods as applied for arrangement of production processes in the range from the simplest to the most advanced ones. The idea behind the research procedure as conducted by the author was to develop a method, models and expert system that would resemble a human expert in the field. This goal was achieved using neural networks.


Author(s):  
Juan A. Rami´rez ◽  
Rafael E. Va´squez ◽  
Luis B. Gutie´rrez ◽  
Diego A. Flo´rez

This paper presents the mechanical/naval design process of an underwater remotely operated vehicle (ROV), required to obtain reliable visual information, used for surveillance and maintenance of ship shells and underwater structures of Colombian port facilities. The design was divided into four main subsystems: mechanical/naval, hardware, software and guidance, navigation and control. The most relevant design constraints were evaluated considering environmental conditions, dimensional restrictions, hydrostatics, hydrodynamics, degrees of freedom and the availability of instrumentation and control hardware. The mechanical/naval design was performed through an iterative process by using computational tools, including Computer Aided Design CAD, Computer Aided Engineering CAE, Computational Fluid Dynamics CFD and a high level programming environment. The obtained design ensures that the reliable operation of the robot will be achieved by using a consistent construction process. The new ROV constitutes an innovative product in Colombia, and it will be used for surveillance and oceanographic research tasks.


1983 ◽  
Vol 10 (3) ◽  
pp. 396-407
Author(s):  
J. L. Humar

Interactive computer graphics which implies a continuous exchange of information between the computer and the user has emerged as a very powerful tool in engineering applications. Computer-aided design (CAD) and computer-aided manufacturing (CAM) have found use in electronic circuit design, manufacturing, mapping, and architectural and engineering planning. Using CAD, a machine part, an electric circuit, or a building plan can be drawn and displayed on a video terminal. The product or plan can then be manipulated, rotated, viewed from different angles, or separated into segments. The graphic and attribute information related to the drawing is stored in a data base, and can be retrieved and modified at any time. At a more sophisticated level of CAD, the data base is used to generate input data for a finite element or another analysis program. This paper presents a brief survey of the CAD scene and the hardware and software available and describes the use of interactive graphics in generating data input for analysis.


Author(s):  
Robert Lipman

The STEP File Analyzer is a software tool that generates a spreadsheet or a set of CSV (comma-separated value) files from a STEP (ISO 10303 –STandard for Exchange of Product model data) Part 21 file. STEP files are used to represent product and manufacturing information (PMI) and for data exchange and interoperability between Computer-Aided Design (CAD), Manufacturing (CAM), Analysis (CAE), and Inspection (CMM) software related to the smart manufacturing digital thread. STEP is also used for the long-term archiving and retrieval of product data. A spreadsheet simplifies inspecting information from the STEP file at an entity and attribute level. Typical STEP file viewers show a 3D visualization of the part or model represented by the STEP file. The viewers usually have a high-level hierarchical display of the information in the STEP file where the user can drill down to individual attributes of parts. However, there is no way to view all of the actual STEP entities and their attributes at once. The STEP File Analyzer provides this capability by creating a spreadsheet from the STEP file. The STEP File Analyzer also generates reports for PMI Representation, PMI Presentation, and Validation Properties based on Recommended Practices defined by the CAx Implementor Forum (CAx-IF) [5]. The objective of the CAx-IF is to advance CAx (mainly Computer-Aided Design and Engineering) software system STEP translator development and to ensure that user requirements for interoperability are satisfied.


Sign in / Sign up

Export Citation Format

Share Document