Nonmetallic textile composite bone plate with desired mechanical properties

2012 ◽  
Vol 46 (21) ◽  
pp. 2753-2761 ◽  
Author(s):  
A Zargar Kharazi ◽  
MH Fathi ◽  
F Bahmani ◽  
H Fanian
2020 ◽  
Vol 26 (7) ◽  
pp. 127-144
Author(s):  
Mays R. Abdulghani ◽  
Dr. Ahmed S. Ali

Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 layers). As well as micro-steel fiber with 1.25% volume fraction was used. Sixteen rectangular reinforced concrete beam specimens have been tested to study the behavior of their flexural strength. The results concluded that utilizing 3D-TFs with mortar mixture gave significantly higher enhancement for the load-carrying capacity than the concrete mixture. The utilization of 3D-TFs and micro-steel fiber together in the SCM mix gave better results. The stiffness of the specimens was improved with increasing the thickness and the number of textile fiber layers.


2011 ◽  
Vol 217-218 ◽  
pp. 1758-1762
Author(s):  
Tao Chang

As the most potential member in the textile composite material, stitched textile composites have already been paid a lot attention. By the simply technology form and relatively low cost, stitched composites had attracted many domestic and foreign researchers, and were gradually used in various engineering practice. This paper using 3D micro-finite element method researches the mechanical behavior and performance of stitched composites, establishing a 3D micro-finite element model for the stitched composites under the improved locking suture way. Through analysis, it shows that each material’s stress distribution characteristics under external loading and finds that the results of this paper’s finite element data results matching well with previous studies’ results, proving the feasibility of this study, so it can be used for forecasting the mechanical properties of a variety of practical stitched composites.


2019 ◽  
Vol 50 (2) ◽  
pp. 133-148 ◽  
Author(s):  
Senthil Kumar ◽  
S Balachander

Process optimization is the key task of any engineering application to maximize the desirable output by optimizing the range of process parameters. In this research work, jute composites were fabricated by the hand lay-up method with the aim of optimizing the process parameter such as yarn linear density, fabric areal density and fabric laying angle on the mechanical properties of the textile composite structures using the Taguchi L9 orthogonal matrix. The plain-woven and twill-woven fabrics of Jute fabrics were produced through specialized handloom machine and used as preform for composite production. Epoxy resin was used as the matrix component. Signal-to-noise ratio ratio, analysis of variance and experimental verification of results were analysed. The results showed that fabric laying angle played major role to achieve high mechanical properties of composites and twill-woven structural reinforcement yields higher mechanical properties. Subsequent to this optimal process, parameters have been arrived for all the composites, and finally it was verified through the experimental results.


Author(s):  
M.S.El- Sayed ◽  
Ahmed S.A AbouTaleb ◽  
M.Fahmy Aly

2009 ◽  
pp. NA-NA
Author(s):  
A. Zadhoush ◽  
M. Sheikhzadeh ◽  
A. Elahidust ◽  
E. Pirzadeh

Sign in / Sign up

Export Citation Format

Share Document