Deterioration of polycrystalline diamond tools in milling of carbon-fiber-reinforced plastic

2016 ◽  
Vol 51 (16) ◽  
pp. 2277-2290 ◽  
Author(s):  
Zhenyuan Jia ◽  
Youliang Su ◽  
Bin Niu ◽  
Yu Bai ◽  
Guangjian Bi

The cutting edge of the polycrystalline diamond tool easily blunts in high-speed milling of carbon-fiber-reinforced plastic with the tool deterioration. It aggravates the burrs damage due to the change in the tool–material interaction. Therefore, this paper analyzes the tool–material interaction in milling of carbon-fiber-reinforced plastic based on the material-removal mechanism to investigate the tool deterioration mechanism. It reveals that there are two main reasons for the tool deterioration: the extreme crashing and ploughing of the uncut fibers on the tool, and the serious impact of fibers strongly supported on the cutting edge. An indirect measure method is proposed to quantify the tool deterioration including the ploughing-caused wear and impact-caused microchipping. Furthermore, the milling tests are performed to evaluate the tool deterioration under different cutting speeds in the range of 7.33–9.42 m/s. Meanwhile, a modified mathematical model of tool life is proposed based on a strict burr specification in milling of the carbon-fiber-reinforced plastics. Polycrystalline diamond tool has the longest life with the run-in wear and the quasi-steady-state wear for 7.33 m/s cutting speed, and the life rapidly decreases with the increase in the cutting speed in this range. For the cutting speed larger than 8.37 m/s, the wear resistance of polycrystalline diamond tool is very low, because the accelerated state wear occurs instead of the quasi-steady-state wear. Thus, the optimization of the tool geometry and the assisted lubrication should be applied for its improvement.

2021 ◽  
Vol 5 (5) ◽  
pp. 137
Author(s):  
Arquimedes Castillo-Morales ◽  
Xavier Rimpault ◽  
Jean-François Chatelain ◽  
Gilbert Lebrun

Carbon Fiber-Reinforced Plastic (CFRP) and Titanium alloy (Ti6Al4V) stacks are used extensively in the modern aerospace industry thanks to their outstanding mechanical properties and resistance to thermal load applications. Machining the CFRP/Ti6Al4V stack is a challenge and is complicated by the differences in each constituent materials’ machinability. The difficulty arises from the matrix degradation of the CFRP material caused by the heat generated during the machining process, which is a consequence of the low thermal conductivity of Ti6Al4V material. In most cases, CFRP and Ti6Al4V materials are stacked and secured together using rivets or bolts. This results in extra weight, while the drilling process required for such an assembly may damage the CFRP material. To overcome these issues, some applications employ an assembly that is free of bolts or rivets, and which uses adhesives or an adapted curing process to bond both materials together. The present research analyzes a thermal distribution and its effect on quality during the edge trimming process of a CFRP/Ti6Al4V stack assembly. Different types of tools and cutting parameters are compared using thermocouples embedded within the material and others on the tool cutting edge. In contrast to previous studies, the feed rate was the most significant factor affecting the cutting temperature and quality of the workpiece, while the cutting speed had no significant impact. The temperature in the workpiece increases as the feed per tooth decreases.


2011 ◽  
Vol 381 ◽  
pp. 1-5 ◽  
Author(s):  
Yong Guo Wang ◽  
Chang Yu Sun ◽  
Xiang Ping Yan ◽  
Ke Ren Jiang

The factors which lead to the surface delamination existing in milling carbon fiber reinforced plastic (CFRP) with PCD tool have been studied. The surface delamination is summarized by analyzing the experiment results based on studying cutting velocity and cutting feed. Experimental results show that the increasing cutting feed leads to the increment of cutting force which in turn causes the increasing delamination of CFRP materials. Moreover, the delamination initial reduces with the increasing cutting speed from 6000 to 10000r/min but subsequently raises when the cutting speed vary from 10000 to 15000r/min with the same cutting feed of 0.08mm/z.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 576
Author(s):  
Liang Luo ◽  
Jie Lai ◽  
Jun Shi ◽  
Guorui Sun ◽  
Jie Huang ◽  
...  

This paper investigates the working performance of reinforcement concrete (RC) beams strengthened by Carbon-Fiber-Reinforced Plastic (CFRP) with different anchoring under bending moment, based on the structural stressing state theory. The measured strain values of concrete and Carbon-Fiber-Reinforced Plastic (CFRP) sheet are modeled as generalized strain energy density (GSED), to characterize the RC beams’ stressing state. Then the Mann–Kendall (M–K) criterion is applied to distinguish the characteristic loads of structural stressing state from the curve, updating the definition of structural failure load. In addition, for tested specimens with middle anchorage and end anchorage, the torsion applied on the anchoring device and the deformation width of anchoring device are respectively set parameters to analyze their effects on the reinforcement performance of CFRP sheet through comparing the strain distribution pattern of CFRP. Finally, in order to further explore the strain distribution of the cross-section and analyze the stressing-state characteristics of the RC beam, the numerical shape function (NSF) method is proposed to reasonably expand the limited strain data. The research results provide a new angle of view to conduct structural analysis and a reference to the improvement of reinforcement effect of CFRP.


2021 ◽  
pp. 073168442098359
Author(s):  
Luyao Xu ◽  
Jiuru Lu ◽  
Kangmei Li ◽  
Jun Hu

In this article, a micro-heterogeneous material simulation model with carbon fiber and resin phase about laser ablation on carbon fiber reinforced plastic (CFRP) is established by Ansys. The ablation process of CFRP by nanosecond ultraviolet laser is simulated, and the mechanism of pulse energy and spot spacing on the heat-affected zone (HAZ) is studied, then the process parameters are optimized with the goal of HAZ size and processing efficiency, and finally the validity of the model is verified by experiments. It is found that the residual gradient and the width of the radial HAZ increase with the increase of the spot spacing, and the width of the axial HAZ decreases slightly with the increase of the spot spacing, which indicates the existence of the optimal spot spacing. Second, the ablation depth increases with the increase of the pulse energy, and the carbon fiber retains a relatively complete degree of exposure when the pulse energy is low, which has a certain guiding significance for the cleaning and bonding of CFRP.


2012 ◽  
Vol 42 (1) ◽  
pp. 55-70 ◽  
Author(s):  
A. Kasimzade ◽  
S. Tuhta

Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced PlasticIn the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.


Sign in / Sign up

Export Citation Format

Share Document