Enhanced mechanical properties of carbon nanotube-reinforced magnesium composites with zirconia fabricated by spark plasma sintering

2021 ◽  
pp. 002199832199391
Author(s):  
Hideaki Tsukamoto

This study aims to enhance carbon nanotube (CNT)-reinforced magnesium (Mg) matrix composites fabricated by spark plasma sintering (SPS). Ultrasonic treatment with organic solvent (DMAc) and dispersant (K2CO3) were used for the processes to make each CNT apart. Nano-order ceramic powders of zirconia (ZrO2) were found to be effective to keep uniform dispersion of CNT in Mg matrix. Low melting point metals such as Sn were added to fill voids and cracks in the composites. Post-SPS rolling was also employed aiming to improve the microstructures. The fabricated CNT-reinforced Mg composites were investigated on mechanical properties such as hardness and three-point bending strength to be related to the microstructures.

2007 ◽  
Vol 336-338 ◽  
pp. 1050-1052 ◽  
Author(s):  
Hai Tao Wu ◽  
Yun Long Yue ◽  
Wei Bing Wu ◽  
Hai Yan Yin

The γ-TiAl intermetallic compounds were produced at the temperature ranging from 850°C to 1050°C by the Spark Plasma Sintering (SPS) process. The effects of sintering temperature and holding time on the mechanical properties of γ-TiAl intermetallic compounds were investigated. The γ-TiAl intermetallic compounds sintered at 1050°C for 10 min showed a high relative density more than 98%, and had the best three-point bending strength of 643MPa, fracture toughness of 12 MPa·m1/2 and microhardness of 560MPa. The microstructural observations indicated typical characteristics of intergranular fracture, which meant the poor ductility of γ-TiAl intermetallic compounds.


2008 ◽  
Vol 368-372 ◽  
pp. 1004-1006 ◽  
Author(s):  
Yun Long Yue ◽  
H.T. Wu

Ti2AlC/TiAl composites with the addition of niobium were prepared by spark plasma sintering using titanium, aluminum, niobium elemental powers and TiC particles as reactants. The experimental and analytical studies on this kind of material concentrated on the relationship between reinforcement phase and mechanical properties. The Ti2AlC/TiAl composites with 5% niobium exhibit high mechanical properties. The three-point bending strength and fracture toughness reaches as high as 915MPa and 23 MPa·m1/2, respectively. It is found that the in-situ reaction occurs at 1100°C with the addition of niobium at the interface between the TiAl matrix and original reinforcement TiC. Further XRD results indicate that the difference in the reinforcement phase from TiC to Ti2AlC is one of the most important origins to the variation in mechanical properties.


2021 ◽  
Vol 878 ◽  
pp. 83-88
Author(s):  
Hideaki Tsukamoto ◽  
Chang Sun

This study aims to fabricate SiC whisker (w)/ particle (p)-reinforced magnesium (Mg) composites with enhanced mechanical properties using spark plasma sintering (SPS) methods. It has been confirmed that dispersing state of SiCw can be improved by addition of SiCp. However, due to presence of voids and cracks between the oxide layers, surrounding SiCw/p, and Mg matrix in the composites, SiCw with SiCp cannot contribute to enhance the bending strength of Mg matrix. This issue can be tackled by adding low melting point metals such as Sn into the composites to fill the defects in the composites.


2021 ◽  
Vol 410 ◽  
pp. 62-67
Author(s):  
Tien Hiep Nguyen ◽  
Yury V. Konyukhov ◽  
Van Minh Nguyen

The impact of Fe, Co, Ni nano-additives on the density, microhardness and bending strength was investigated for several sintered pellets. Fe, Co, Ni nanopowders (NP) were prepared in the size range 67-94 nm using chemical metallurgy techniques. These powders (0.5 wt. %) were dispersed into three sets of micron powders: Co (+0.5 wt. % Co NP); Fe (+0.5 wt. % Fe NP); Fe+0.5wt. % C (+0.5 wt. % Co and 0.5 wt. % Ni NP). Mixtures were further mixed and processed using a magnetic mill and a turbulent mixer. Sintering was carried out using spark plasma sintering (SPS) as well as pressureless sintering (PS). The densities of sintered pellets were found to increase by 2.5-3% (SPS) and 3-5% (PS) in the presence of nano-additives; corresponding increases in microhardness and bending strength were determined to be 7.9-11.1% and 17.9-38.7%, respectively. These results are discussed in terms enhanced packing due to interparticle sliding and the filling of free spaces with the nanodisperse phase.


Sign in / Sign up

Export Citation Format

Share Document