Aβ Accumulation in Vmo Contributes to Masticatory Dysfunction in 5XFAD Mice

2021 ◽  
pp. 002203452110002
Author(s):  
H.B. Kim ◽  
D. Kim ◽  
H. Kim ◽  
W. Kim ◽  
S. Chung ◽  
...  

Alzheimer’s disease (AD) shows various symptoms that reflect cognitive impairment and loss of neural circuit integrity. Sensory dysfunctions such as olfactory and ocular pathology are also observed and used as indicators for early detection of AD. Although mastication is suggested to correlate with AD progression, changes in the masticatory system have yet to be established in transgenic animal models of AD. In the present study, we have assessed pathologic hallmarks of AD with the masticatory behavior of 5XFAD mice. We found that masticatory efficiency and maximum biting force were decreased in 5XFAD mice, with no significant change in general motor function. Immunohistochemical analysis revealed significant accumulation of Aβ (amyloid β), increased microglia number, and cell death in Vmo (trigeminal motor nucleus) as compared with other cranial motor nuclei that innervate the orofacial region. Masseter muscle weight and muscle fiber size were also decreased in 5XFAD mice. Taken together, our results demonstrate that Aβ accumulation in Vmo contributes to masticatory dysfunction in 5XFAD mice, suggesting a close association between masticatory dysfunction and dementia.

2011 ◽  
Vol 39 (4) ◽  
pp. 868-873 ◽  
Author(s):  
Eva Borger ◽  
Laura Aitken ◽  
Kirsty E.A. Muirhead ◽  
Zoe E. Allen ◽  
James A. Ainge ◽  
...  

It is well established that the intracellular accumulation of Aβ (amyloid β-peptide) is associated with AD (Alzheimer's disease) and that this accumulation is toxic to neurons. The precise mechanism by which this toxicity occurs is not well understood; however, identifying the causes of this toxicity is an essential step towards developing treatments for AD. One intracellular location where the accumulation of Aβ can have a major effect is within mitochondria, where mitochondrial proteins have been identified that act as binding sites for Aβ, and when binding occurs, a toxic response results. At one of these identified sites, an enzyme known as ABAD (amyloid-binding alcohol dehydrogenase), we have identified changes in gene expression in the brain cortex, following Aβ accumulation within mitochondria. Specifically, we have identified two proteins that are up-regulated not only in the brains of transgenic animal models of AD but also in those of human sufferers. The increased expression of these proteins demonstrates the complex and counteracting pathways that are activated in AD. Previous studies have identified approximate contact sites between ABAD and Aβ; on basis of these observations, we have shown that by using a modified peptide approach it is possible to reverse the expression of these two proteins in living transgenic animals and also to recover mitochondrial and behavioural deficits. This indicates that the ABAD–Aβ interaction is potentially an interesting target for therapeutic intervention. To explore this further we used a fluorescing substrate mimic to measure the activity of ABAD within living cells, and in addition we have identified chemical fragments that bind to ABAD, using a thermal shift assay.


2011 ◽  
Vol 39 (4) ◽  
pp. 857-861 ◽  
Author(s):  
Thomas A. Bayer ◽  
Oliver Wirths

In the present review, we summarize the current achievements of modelling early intraneuronal Aβ (amyloid β-peptide) accumulation in transgenic mice with the resulting pathological consequences. Of special importance will be to discuss recent developments and the translation of the results to AD (Alzheimer's disease). N-terminally truncated AβpE3 (Aβ starting with pyroglutamate at position 3) represents a major fraction of all Aβ peptides in the brain of AD patients. Recently, we generated a novel mAb (monoclonal antibody), 9D5, that selectively recognizes oligomeric assemblies of AβpE3 and demonstrated the potential involvement of oligomeric AβpE3in vivo using transgenic mouse models as well as human brains from sporadic and familial AD cases. 9D5 showed an unusual staining pattern with almost non-detectable plaques in sporadic AD patients and non-demented controls. Interestingly, in sporadic and familial AD cases prominent intraneuronal staining was observed. Moreover, passive immunization of 5XFAD mice with 9D5 significantly reduced overall Aβ levels and stabilized behavioural deficits. In summary, we have demonstrated that intraneuronal Aβ is a valid risk factor in model systems and AD patients. This feature of AD pathology was successful in identifying novel low-molecular-mass oligomeric Aβ-specific antibodies for diagnosis and therapy.


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Gowoon Son ◽  
Seung-Jun Yoo ◽  
Shinwoo Kang ◽  
Ameer Rasheed ◽  
Da Hae Jung ◽  
...  

Abstract Background Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. Results We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN’s loss could be a leading cause of AD-related hyposmia, a characteristic of early AD.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 630 ◽  
Author(s):  
Donald G Matthews ◽  
Maya Caruso ◽  
Charles F Murchison ◽  
Jennifer Y Zhu ◽  
Kirsten M Wright ◽  
...  

Centella asiatica (CA) herb is a traditional medicine, long reputed to provide cognitive benefits. We have reported that CA water extract (CAW) treatment improves cognitive function of aged Alzheimer’s disease (AD) model Tg2576 and wild-type (WT) mice, and induces an NRF2-regulated antioxidant response in aged WT mice. Here, CAW was administered to AD model 5XFAD female and male mice and WT littermates (age: 7.6 +/ − 0.6 months), and object recall and contextual fear memory were tested after three weeks treatment. CAW’s impact on amyloid-β plaque burden, and markers of neuronal oxidative stress and synaptic density, was assessed after five weeks treatment. CAW antioxidant activity was evaluated via nuclear transcription factor (erythroid-derived 2)-like 2 (NRF2) and NRF2-regulated antioxidant response element gene expression. Memory improvement in both genders and genotypes was associated with dose-dependent CAW treatment without affecting plaque burden, and marginally increased synaptic density markers in the hippocampus and prefrontal cortex. CAW treatment increased Nrf2 in hippocampus and other NRF2 targets (heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit). Reduced plaque-associated SOD1, an indicator of oxidative stress, was observed in the hippocampi and cortices of CAW-treated 5XFAD mice. We postulate that CAW treatment leads to reduced oxidative stress, contributing to improved neuronal health and cognition.


2014 ◽  
Vol 34 (6) ◽  
Author(s):  
Genadiy Fonar ◽  
Abraham O. Samson

Alzheimer's disease is the most common neurodegenerative disorder in the world. Its most significant symptoms are memory loss and decrease in cognition. Alzheimer's disease is characterized by aggregation of two proteins in the brain namely Aβ (amyloid β) and tau. Recent evidence suggests that the interaction of soluble Aβ with nAChR (nicotinic acetylcholine receptors) contributes to disease progression. In this study, we determine the NMR structure of an Aβ17–34 peptide solubilized by the addition of two glutamic acids at each terminus. Our results indicate that the Aβ peptide adopts an α-helical structure for residues 19–26 and 28–33. The α-helical structure is broken around residues S26, N27 and K28, which form a kink in the helical conformation. This α-helix was not described earlier in an aqueous solution without organic solvents, and at physiological conditions (pH 7). These data are in agreement with Aβ adopting an α-helical conformation in the membrane before polymerizing into amyloid β-sheets and provide insight into the intermediate state of Aβ in Alzheimer's disease.


2021 ◽  
pp. 1-11
Author(s):  
Min Zhu ◽  
Longfei Jia ◽  
Jianping Jia

Background: Imbalance between amyloid-β (Aβ) production and clearance results in Aβ accumulation. Regulating Aβ levels is still a hot point in the research of Alzheimer’s disease (AD). Objective: To identify the differential expression of ATP-binding cassette A1 (ABCA1) and its upstream microRNA (miRNA) in AD models, and to explore their relationships with Aβ levels. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to determine the expression of ABCA1 in 5xFAD mice, SH-SY5Y cells treated with Aβ oligomers and SH-SY5YAβPP695 cells (AD models). TargetScan was used to predict the upstream miRNAs for ABCA1. Dual-luciferase assay was conducted to identify the regulation of the miRNA on ABCA1. qRT-PCR was used to measure the expression of miRNA in AD models. Finally, enzyme-linked immunosorbent assays were performed to detect Aβ 42 and Aβ40 levels. Results: The expression of ABCA1 was significantly down regulated in AD models at both mRNA and protein levels. Dual-luciferase assay showed that miR-96-5p could regulate the expression of ABCA1 through binding to the 3 untranslated region of ABCA1. The level of miR-96-5p was significantly elevated in AD models. The expression of ABCA1 was enhanced while Aβ 42 levels and Aβ 42/Aβ 40 ratios were reduced in SH-SY5Y A βPP695 cells after treated with miR-96-5p inhibitor. Conclusion: The current study found that miR-96-5p is the upstream miRNA for ABCA1. Suppression of miR-96-5p in AD models could reduce Aβ 42/Aβ 40 ratios via up regulating the expression of ABCA1, indicating that miR-96-5p plays an important role in regulating the content of Aβ.


1987 ◽  
Vol 58 (3) ◽  
pp. 496-509 ◽  
Author(s):  
A. Lev-Tov ◽  
M. Tal

The structure and activity patterns of the anterior and posterior heads of the guinea pig digastric muscle (DG) were studied in ketamine-anesthetized guinea pigs. Collagen staining of longitudinal and transverse sections of the muscle revealed that the guinea pig DG is comprised of a unicompartmental anterior head (ADG) and a multicompartmental posterior head (PDG). The two heads are separated by a thin tendinous inscription that, unlike the intermediate tendon of the DG in humans, is not attached to the hyoid bone. The motor nuclei of the guinea pig DG were reconstructed using retrograde labeling with horseradish peroxidase. The motoneurons of the ADG were clustered in a longitudinal column within the trigeminal motor nucleus. The motoneurons of the PDG were segregated into two clusters within the facial motor nucleus. The cross-sectional areas of the ADG and PDG motoneuron somata exhibited unimodal frequency distributions and the average soma area was larger for ADG than PDG motoneurons. Histochemical characterization of ADG and PDG revealed that the two muscle heads contained the three main histochemical types of muscle fibers identified in limb muscles. The frequency distribution of fiber types in ADG and PDG were not significantly different. Both muscle heads were predominantly fast with slow oxidative fibers accounting for only 1.1 and 0.3% of the fibers in narrow dorsal regions of ADG and PDG, respectively, and 13.6 and 12.9% in the more ventral regions of ADG and PDG, respectively. Simultaneous recordings of EMGs from the ADG and PDG were carried out during spontaneously occurring rhythmical jaw movements. These recordings revealed a high degree of synchrony between the activities of the two heads, although differences were observed in the onset and duration of the EMG bursts. Activity in the PDG preceded activity in the ADG in most of the rhythmical cycles and persisted longer. The differences in latencies of time-locked EMGs evoked in the ADG and PDG by four-pulse cortical stimulation were much smaller than those observed between the activity bursts of the two heads during rhythmical jaw movements. It is suggested that the early activity in the PDG is accounted for by shorter central conduction times in the pathways onto it and/or by higher recruitability of its motor units. The early activity in PDG may serve to optimize the location of ADG on its length-tension curve prior to and during the active state.


Sign in / Sign up

Export Citation Format

Share Document