In vivo and in vitro Study of the Effects of Vitamin A Deficiency on Rat Third Molar Development

1986 ◽  
Vol 65 (12) ◽  
pp. 1445-1448 ◽  
Author(s):  
S.S. Harris ◽  
J.M. Navia

We have examined the effect of in vivo vitamin A status on subsequent rat third molar formation and mineralization in an in vitro organ culture system. Vitamin A deficiency imposed during an eight-day in vitro period caused effects very similar to those of vitamin A deficiency imposed on rats in vivo. Analysis of the data also demonstrates that retinoic acid is capable of reversing the interference in mineralization of third molars induced by vitamin A deficiency in the organ culture system.

1969 ◽  
Vol 111 (4) ◽  
pp. 407-412 ◽  
Author(s):  
D. B. Thomas ◽  
C A Pasternak

1. The uptake and incorporation of [35S]sulphate into mucopolysaccharides by colon and duodenum in vitro are unaffected by the vitamin A status of the animals. 2. Uptake and incorporation in vivo are unaffected at 4hr. after injection of [35S]sulphate, but at later times are decreased in some tissues of vitamin A-deficient animals. 3. The rate of removal of 35S from blood, its rate of appearance in urine, the plasma concentration of sulphate and the uronic acid content of several tissues are not significantly altered in vitamin A deficiency. 4. These results, and direct measurement of 35S in mucopolysaccharides at various times after injection of [35S]sulphate, suggest that the synthesis of mucopolysaccharides is unaffected but that their turnover is increased in vitamin A deficiency. 5. Neither the growth rate of, nor the incorporation of [35S]sulphate into heparin by, P815Y and HC cultured neoplastic mast cells is decreased when the horse serum necessary for growth is treated with ultraviolet light or is replaced by serum from vitamin A-deficient rats. 6. The addition of citral is no more toxic to growth rate or to incorporation of 35S than is the addition of vitamin A itself. 7. It is concluded that neoplastic mast cells in culture do not require vitamin A for growth or for the synthesis of heparin. 8. None of these results is compatible with the view that vitamin A or a derivative is directly involved in the biosynthesis of sulphated mucopolysaccharides.


1973 ◽  
Vol 82 (4_suppl) ◽  
pp. 3-18

Twelfth and thirteenth gestation day mouse embryo otocysts have been explanted into an organ culture system that promotes advances in morphogenesis and differentiation of sensory structures. The pattern of morphogenesis that occurs “in vitro” is not equivalent to that which occurs in the “in vivo” environment. These morphogenetic changes occur with greatest frequency in the explanted thirteenth gestation day otocyst. The development of sensory structures occurs with equal distribution in the twelfth and thirteenth gestation day explanted otocysts. The thirteenth gestation day mouse otocyst favors the development of organ of Corti type formations, and the twelfth gestation day otocyst favors the development of maculae of sensory cells of a vestibular character in the organ culture system employed. The thirteenth gestation day otocyst requires a shorter period of “in vitro” development to produce differentiation of sensory structures. The sensory structures that develop “in vitro” follow the pattern of the sensory structures that develop “in vivo.”


1980 ◽  
Vol 151 (2) ◽  
pp. 429-445 ◽  
Author(s):  
J M Teale ◽  
T E Mandel

The maturation of B-lymphocyte function during fetal development was studied in vivo and in an in vitro organ culture system. The results indicated that the progenitors for 2,4-dinitrophenol (DNP)-specific B cells are present as early as 14 d of gestation in liver and possibly as early as 15 d in spleen. In addition, it was found that the organ culture system supports the development of B lymphocytes as measured by an increase in both the percentage of surface immunoglobulin-positive cells and the frequency of clonable DNP-specific B cells after culturing. The majority of anti-DNP-secreting clones resulting from the antigenic stimulation of fetal B cells produced only the IgM isotype, and the ability to secrete the IgG isotypes increased as a function of gestational age. Because fetal DNP precursors from spleens and livers that had been incubated in organ culture resulted in a greater proportion of clones secreting IgG compared with age-matched uncultured controls, it was concluded that the maturation with regard to the ability to secrete IgG can occur in vitro. In studies relating to the ontogenetic development of tolerance susceptibility, it was found that up to one-half of the DNP-specific B-cell precursors from livers and spleens less than 18 or 19 d of gestation were resistant to tolerogen treatment for 24 h as if in a pretolerant phase. However, if tolerogen were present for 3--5 d during organ culture there was near total elimination of potential DNP clones. This finding suggested that the 24-h induction period was insufficient for affecting the DNP-specific precursors in livers and spleens from the earlier gestational ages, and that a proportion of precursors could subsequently form DNP clones in the splenic focus assay after the removal of tolerogen.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1128 ◽  
Author(s):  
Pedro de Medeiros ◽  
Daniel Pinto ◽  
Juliana de Almeida ◽  
Juliana Rêgo ◽  
Francisco Rodrigues ◽  
...  

The micronutrient vitamin A refers to a group of compounds with pleiotropic effects on human health. These molecules can modulate biological functions, including development, vision, and regulation of the intestinal barrier. The consequences of vitamin A deficiency and supplementation in children from developing countries have been explored for several years. These children live in an environment that is highly contaminated by enteropathogens, which can, in turn, influence vitamin A status. Vitamin A has been described to modulate gene expression, differentiation and function of diverse immune cells; however, the underlying mechanisms are not fully elucidated. This review aims to summarize the most updated advances on elucidating the vitamin A effects targeting intestinal immune and barrier functions, which may help in further understanding the burdens of malnutrition and enteric infections in children. Specifically, by covering both clinical and in vivo/in vitro data, we describe the effects of vitamin A related to gut immune tolerance/homeostasis, intestinal barrier integrity, and responses to enteropathogens in the context of the environmental enteric dysfunction. Some of the gaps in the literature that require further research are also highlighted.


1973 ◽  
Vol 82 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Thomas R. Van De Water ◽  
P. Heywood ◽  
Robert J. Ruben

Twelfth and thirteenth gestation day mouse embryo otocysts have been explanted into an organ culture system that promotes advances in morphogenesis and differentiation of sensory structures. The pattern of morphogenesis that occurs “in vitro” is not equivalent to that which occurs in the “in vivo” environment. These morphogenetic changes occur with greatest frequency in the explanted thirteenth gestation day otocyst. The development of sensory structures occurs with equal distribution in the twelfth and thirteenth gestation day explanted otocysts. The thirteenth gestation day mouse otocyst favors the development of organ of Corti type formations, and the twelfth gestation day otocyst favors the development of maculae of sensory cells of a vestibular character in the organ culture system employed. The thirteenth gestation day otocyst requires a shorter period of “in vitro” development to produce differentiation of sensory structures. The sensory structures that develop “in vitro” follow the pattern of the sensory structures that develop “in vivo.”


1994 ◽  
Vol 6 (2) ◽  
pp. 229 ◽  
Author(s):  
K Turner ◽  
AW Rogers ◽  
EA Lenton

The dry mass of mouse embryos cultured in vitro in medium alone or in an organ culture system were measured by means of the Vickers M86 scanning microinterferometer. The data were compared with previous data on the dry mass of preimplantation embryos in vivo. The metabolism of embryos cultured in vitro differs from that of fresh embryos. In cultured embryos, dry mass decreases throughout the 2-cell stage whereas the dry mass is increasing at this stage in vivo. Embryos in an organ culture system regain a dry mass profile, similar to that observed in vivo at the late cleavage stage. These results support the view that conditions for embryo metabolism are suboptimal in vitro and that, although the oviduct may confer some advantage on developing embryos in vitro, it is unable fully to support the pattern of metabolism, as assessed by dry mass, observed in vivo.


2005 ◽  
Vol 171 (5) ◽  
pp. 835-844 ◽  
Author(s):  
Feng-Xia Liang ◽  
Maarten C. Bosland ◽  
Hongying Huang ◽  
Rok Romih ◽  
Solange Baptiste ◽  
...  

Although the epithelial lining of much of the mammalian urinary tract is known simply as the urothelium, this epithelium can be divided into at least three lineages of renal pelvis/ureter, bladder/trigone, and proximal urethra based on their embryonic origin, uroplakin content, keratin expression pattern, in vitro growth potential, and propensity to keratinize during vitamin A deficiency. Moreover, these cells remain phenotypically distinct even after they have been serially passaged under identical culture conditions, thus ruling out local mesenchymal influence as the sole cause of their in vivo differences. During vitamin A deficiency, mouse urothelium form multiple keratinized foci in proximal urethra probably originating from scattered K14-positive basal cells, and the keratinized epithelium expands horizontally to replace the surrounding normal urothelium. These data suggest that the urothelium consists of multiple cell lineages, that trigone urothelium is closely related to the urothelium covering the rest of the bladder, and that lineage heterogeneity coupled with cell migration/replacement form the cellular basis for urothelial squamous metaplasia.


1973 ◽  
Vol 51 (1) ◽  
pp. 6-11 ◽  
Author(s):  
G. C. Becking

The effect of vitamin A status on hepatic drug metabolism was studied in rats. Animals were fed diets with and without vitamin A for 20 and 25 days. Weight gains of control and deficient animals were not significantly different, whereas liver vitamin A levels had decreased to less than 10% of control animals after 20 days and were essentially zero after eating the deficient diet for 25 days. Aniline metabolism in vitro and aminopyrine metabolism in vitro and in vivo were significantly lower in male weanling rats fed a vitamin A deficient diet for 20 days. No alteration in in vitro p-nitrobenzoic acid metabolism was noted after 25 days on the test. Vitamin A deficiency did not alter microsomal protein levels or cytochrome c reductase activity but deficient animals did have a lower microsomal cytochrome P-450 content. Hepatic enzyme activities and cytochrome P-450 levels were restored to values approaching those found in control animals by feeding vitamin A deficient rats the vitamin A containing diet for 21 days. Liver vitamin A levels were markedly increased after re-feeding studies but were still significantly lower than control animals.


Sign in / Sign up

Export Citation Format

Share Document