Estimation of the Maximal Lactate Steady State Intensity by the Rating of Perceived Exertion

2016 ◽  
Vol 122 (1) ◽  
pp. 136-149 ◽  
Author(s):  
Bibiano Madrid ◽  
F.O. Pires ◽  
Jonato Prestes ◽  
Denis César Leite Vieira ◽  
Tyler Clark ◽  
...  
2014 ◽  
Vol 9 (5) ◽  
pp. 772-776 ◽  
Author(s):  
Naiandra Dittrich ◽  
Ricardo Dantas de Lucas ◽  
Ralph Beneke ◽  
Luiz Guilherme Antonacci Guglielmo

The purpose of this study was to determine and compare the time to exhaustion (TE) and the physiological responses at continuous and intermittent (ratio 5:1) maximal lactate steady state (MLSS) in well-trained runners. Ten athletes (32.7 ± 6.9 y, VO2max 61.7 ± 3.9 mL · kg−1 · min−1) performed an incremental treadmill test, three to five 30-min constant-speed tests to determine the MLSS continuous and intermittent (5 min of running, interspaced by 1 min of passive rest), and 2 randomized TE tests at such intensities. Two-way ANOVA with repeated measures was used to compare the changes in physiological variables during the TE tests and between continuous and intermittent exercise. The intermittent MLSS velocity (MLSSint = 15.26 ± 0.97 km/h) was higher than in the continuous model (MLSScon = 14.53 ± 0.93 km/h), while the TE at MLSScon was longer than MLSSint (68 ± 11 min and 58 ± 15 min, P < .05). Regarding the cardiorespiratory responses, VO2 and respiratory-exchange ratio remained stable during both TE tests while heart rate, ventilation, and rating of perceived exertion presented a significant increase in the last portion of the tests. The results showed a higher tolerance to exercising during MLSScon than during MLSSint in trained runners. Thus, the training volume of an extensive interval session (ratio 5:1) designed at MLSS intensity should take into consideration this higher speed at MLSS and also the lower TE than with continuous exercise.


2018 ◽  
Vol 13 (6) ◽  
pp. 687-693 ◽  
Author(s):  
Pitre C. Bourdon ◽  
Sarah M. Woolford ◽  
Jonathan D. Buckley

This study aimed to identify the minimum increment duration required to accurately assess 2 distinct lactate thresholds. A total of 21 elite rowers (12 women and 9 men) participated in this study, and each performed 8 or 9 rowing tests comprising 5 progressive incremental tests (3-, 4-, 5-, 7-, or 10-min steps) and at least three 30-min constant-intensity maximal lactate steady-state assessments. Power output (PO) at lactate threshold 1 was higher in the 3- and 4-min incremental tests. No other measures were different for lactate threshold 1. The PO at the second lactate threshold was different between most tests and was higher than the PO at maximal lactate steady state, except for the 10-min incremental test. Lactate threshold 2 oxygen consumption was higher in the 3-, 4-, and 5-min tests, but heart rate (HR) and rating of perceived exertion were not different between tests. Peak PO in the incremental tests was inversely related to the step durations (r2 = .86, P ≤ .02). Peak oxygen consumption was higher in the shorter (≤5 min) than the longer (≥7 min) incremental tests, whereas peak HR was not different between tests. These data suggest that for the methods used in this study, incremental exercise tests with step durations ≤7 min overestimate maximal lactate steady-state exercise intensity, peak physiological values are best determined using incremental tests with step durations ≤4 min, and HR measures are not affected by step duration, and therefore, prescription of training HRs can be made using any of these tests.


Author(s):  
Claudio Perret ◽  
Kathrin Hartmann

AbstractThe heart rate-based lactate minimum test is a highly reproducible exercise test. However, the relation between lactate minimum determined by this test and maximal lactate steady state in running and cycling is still unclear. Twelve endurance-trained men performed this test in running and cycling. Exercise intensity at maximal lactate steady state was determined by performing several constant heart rate endurance tests for both exercise modes. Heart rate, power output, lactate concentration, oxygen uptake and rating of perceived exertion at lactate minimum, maximal lactate steady state and maximal performance were analysed. All parameters were significantly higher at maximal lactate steady state compared to lactate minimum for running and cycling. Significant correlations (p<0.05) between maximal lactate steady state and lactate minimum data were found. Peak heart rate and peak oxygen uptake were significantly higher for running versus cycling. Nevertheless, the exercise mode had no influence on relative (in percentage of maximal values) heart rate at lactate minimum (p=0.099) in contrast to relative power output (p=0.002). In conclusion, all measured parameters at lactate minimum were significantly lower but highly correlated with values at maximal lactate steady state in running and cycling, which allows to roughly estimate exercise intensity at maximal lactate steady state with one single exercise test.


Author(s):  
Thomas Losnegard ◽  
Sondre Skarli ◽  
Joar Hansen ◽  
Stian Roterud ◽  
Ida S. Svendsen ◽  
...  

Purpose: Rating of perceived exertion (RPE) is a widely used tool to assess subjective perception of effort during exercise. The authors investigated between-subject variation and effect of exercise mode and sex on Borg RPE (6–20) in relation to heart rate (HR), oxygen uptake (VO2), and capillary blood lactate concentrations. Methods: A total of 160 elite endurance athletes performed a submaximal and maximal test protocol either during cycling (n = 84, 37 women) or running (n = 76, 32 women). The submaximal test consisted of 4 to 7 progressive 5-minute steps within ∼50% to 85% of maximal VO2. For each step, steady-state HR, VO2, and capillary blood lactate concentrations were assessed and RPE reported. An incremental protocol to exhaustion was used to determine maximal VO2 and peak HR to provide relative (%) HR and VO2 values at submaximal work rates. Results: A strong relationship was found between RPE and %HR, %VO2, and capillary blood lactate concentrations (r = .80–.82, all Ps < .05). The between-subject coefficient of variation (SD/mean) for %HR and %VO2 decreased linearly with increased RPE, from ∼10% to 15% at RPE 8 to ∼5% at RPE 17. Compared with cycling, running induced a systematically higher %HR and %VO2 (∼2% and 5%, respectively, P < .05) with these differences being greater at lower intensities (RPE < 13). At the same RPE, women showed a trivial, but significantly higher %HR and %VO2 than men (<1%, P < .05). Conclusions: Among elite endurance athletes, exercise mode influenced RPE at a given %HR and %VO2, with greater differences at lower exercise intensities. Athletes should manage different tools to evaluate training based on intensity and duration of workouts.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
J. Lässing ◽  
R. Falz ◽  
C. Pökel ◽  
S. Fikenzer ◽  
U. Laufs ◽  
...  

AbstractWearing face masks reduce the maximum physical performance. Sports and occupational activities are often associated with submaximal constant intensities. This prospective crossover study examined the effects of medical face masks during constant-load exercise. Fourteen healthy men (age 25.7 ± 3.5 years; height 183.8 ± 8.4 cm; weight 83.6 ± 8.4 kg) performed a lactate minimum test and a body plethysmography with and without masks. They were randomly assigned to two constant load tests at maximal lactate steady state with and without masks. The cardiopulmonary and metabolic responses were monitored using impedance cardiography and ergo-spirometry. The airway resistance was two-fold higher with the surgical mask (SM) than without the mask (SM 0.58 ± 0.16 kPa l−1 vs. control [Co] 0.32 ± 0.08 kPa l−1; p < 0.01). The constant load tests with masks compared with those without masks resulted in a significantly different ventilation (77.1 ± 9.3 l min−1 vs. 82.4 ± 10.7 l min−1; p < 0.01), oxygen uptake (33.1 ± 5 ml min−1 kg−1 vs. 34.5 ± 6 ml min−1 kg−1; p = 0.04), and heart rate (160.1 ± 11.2 bpm vs. 154.5 ± 11.4 bpm; p < 0.01). The mean cardiac output tended to be higher with a mask (28.6 ± 3.9 l min−1 vs. 25.9 ± 4.0 l min−1; p = 0.06). Similar blood pressure (177.2 ± 17.6 mmHg vs. 172.3 ± 15.8 mmHg; p = 0.33), delta lactate (4.7 ± 1.5 mmol l−1 vs. 4.3 ± 1.5 mmol l−1; p = 0.15), and rating of perceived exertion (6.9 ± 1.1 vs. 6.6 ± 1.1; p = 0.16) were observed with and without masks. Surgical face masks increase airway resistance and heart rate during steady state exercise in healthy volunteers. The perceived exertion and endurance performance were unchanged. These results may improve the assessment of wearing face masks during work and physical training.


2017 ◽  
Vol 42 (2) ◽  
pp. 142-147 ◽  
Author(s):  
Oliver Faude ◽  
Anne Hecksteden ◽  
Daniel Hammes ◽  
Franck Schumacher ◽  
Eric Besenius ◽  
...  

The maximal lactate steady-state (MLSS) is frequently assessed for prescribing endurance exercise intensity. Knowledge of the intra-individual variability of the MLSS is important for practical application. To date, little is known about the reliability of time-to-exhaustion and physiological responses to exercise at MLSS. Twenty-one healthy men (age, 25.2 (SD 3.3) years; height, 1.83 (0.06) m; body mass, 78.9 (8.9) kg; maximal oxygen uptake, 57.1 (10.7) mL·min−1·kg−1) performed 1 incremental exercise test, and 2 constant-load tests to determine MLSS intensity. Subsequently, 2 open-end constant-load tests (MLSS 1 and 2) at MLSS intensity (3.0 (0.7) W·kg−1, 76% (10%) maximal oxygen uptake) were carried out. During the tests, blood lactate concentrations, heart rate, ratings of perceived exertion (RPE), variables of gas exchange, and core body temperature were determined. Time-to-exhaustion was 50.8 (14.0) and 48.2 (16.7) min in MLSS 1 and 2 (mean change: −2.6 (95% confidence interval: −7.8, 2.6)), respectively. The coefficient of variation (CV) was high for time-to-exhaustion (24.6%) and for mean (4.8 (1.2) mmol·L−1) and end (5.4 (1.7) mmol·L−1) blood lactate concentrations (15.7% and 19.3%). The CV of mean exercise values for all other parameters ranged from 1.4% (core temperature) to 8.3% (ventilation). At termination, the CVs ranged from 0.8% (RPE) to 11.8% (breathing frequency). The low reliability of time-to-exhaustion and blood lactate concentration at MLSS indicates that the precise individual intensity prescription may be challenging. Moreover, the obtained data may serve as reference to allow for the separation of intervention effects from random variation in our sample.


2000 ◽  
Vol 25 (4) ◽  
pp. 250-261 ◽  
Author(s):  
Claude Lajoie ◽  
Louis Laurencelle ◽  
François Trudeau

Changes in physiological variables during a 60-min continuous test at maximal lactate steady state (MLSS) were studied using highly conditioned cyclists (1 female and 9 males, aged 28.3 ± 8.1 years). To determine power at MLSS, we tested at 8-min increments and interpolated the power corresponding to a blood lactate value of 4 mmol/L. During the subsequent 60-min exercise at MLSS, we observed a sequential increase of physiological parameters, in contrast to stable blood lactate. Heart rate drifted upward from beginning to end of exercise. This became statistically significant after 30 min. From 10-60 min of exercise, a change of + 12.6 ± 3.2 bpm was noted. Significant drift was seen after 30 min for the respiratory exchange ratio, after 40 min for the rate of perceived exertion using the Borg scale, and after 50 min for % [Formula: see text] and minute ventilation. This slow component of [Formula: see text] may be the result of higher recruitment of type II fibers. Key words: Rate of perceived exertion, heart rate, oxygen consumption, blood lactate, cycling


2000 ◽  
Vol 10 (4) ◽  
pp. 444-451 ◽  
Author(s):  
L. Christopher Eschbach ◽  
Michael J. Webster ◽  
Joseph C. Boyd ◽  
Patrick D. McArthur ◽  
Tammy K. Evetovich

It has been suggested that Eleutherococcus senticosus (ES). also known as Siberian ginseng or ciwuija. increases fat utilization in humans. The purpose of this study was to examine the physiological responses to supplementation with ES in endurance cyclists. Using arandomized. double-blind crossover design. 9 highly-trained men (28 ± 2 years. V̇O2max 57.3±2.0 ml · kg−1 · min−1) cycled for 120 min at 60% V̇O2max followed by a simulated 10-km lime trial. Diet was controlled, and ES (1,200 mg · day−1) or a placebo (P) were administered for 7 days prior to each of the two trials. Oxygen consumption, respiratory exchange ratio, and heart rate were recorded every 30 min, and rating of perceived exertion. plasma [lactate], and plasma [glucose j were recorded every 20 min during the 120 min of steady state cycling. There were no significant differences (p > .05) between the ES and P groups at any steady-state time interval or during the cycling time trial (ES = 18.10 ± 0.42, P = 17.83 ± 0.47 min). In contrast with previous reports, the results of this study suggest that ES supplementation does not alter steady-state substrate utilization or 10-km cycling performance time.


2016 ◽  
Vol 11 (8) ◽  
pp. 1088-1093 ◽  
Author(s):  
Joshua Christen ◽  
Carl Foster ◽  
John P. Porcari ◽  
Richard P. Mikat

Purpose:The session rating of perceived exertion (sRPE) has gained popularity as a “user friendly” method for evaluating internal training load. sRPE has historically been obtained 30 min after exercise. This study evaluated the effect of postexercise measurement time on sRPE after steady-state and interval cycle exercise. Methods:Well-trained subjects (N = 15) (maximal oxygen consumption = 51 ± 4 and 36 ± 4 mL/kg [cycle ergometer] for men and women, respectively) completed counterbalanced 30-minute steady-state and interval training bouts. The steady-state ride was at 90% of ventilatory threshold. The work-to-rest ratio of the interval rides was 1:1, and the interval segment durations were 1, 2, and 3 min. The high-intensity component of each interval bout was 75% peak power output, which was accepted as a surrogate of the respiratory compensation threshold, critical power, or maximal lactate steady state. Heart rate, blood lactate, and rating of perceived exertion (RPE) were measured. The sRPE (category ratio scale) was measured at 5, 10, 15, 20, 25, 30, and 60 min and 24 h after each ride using a visual analog scale (VAS) to prevent bias associated with specific RPE verbal anchors. Results:sRPE at 30 min postexercise followed a similar trend: steady state = 3.7, 1 min = 3.9, 2 min = 4.7, 3 min = 6.2. No significant differences (P > .05) in sRPE were found based on postexercise sampling times, from 5 min to 24 h postexercise. Conclusions:Postexercise time does not appear to have a significant effect on sRPE after either steady-state or interval exercise. Thus, sRPE appears to be temporally robust and is not necessarily limited to the 30-min-postexercise window historically used with this technique, although the presence or absence of a cooldown period after the exercise bout may be important.


2016 ◽  
Vol 12 (1) ◽  
pp. 49-54 ◽  
Author(s):  
J. Sinclair ◽  
H. Shore ◽  
S. Dillon

The aim of the current study was to explore the effects of minimalist, maximalist and energy return footwear of equal mass on economy and substrate utilisation during steady state running. Ten male runners completed 6 min steady state runs in minimalist, maximalist and energy return footwear. The mass of the footwear was controlled by adding lead tape to the lighter shoes. Running economy, shoe comfort, rating of perceived exertion and % contribution of carbohydrate to total calorie expenditure were assessed. Participants also subjectively indicated which shoe condition they preferred for running. Differences in shoe comfort and physiological parameters were examined using paired samples t-tests, whilst shoe preferences were tested using a chi-square test. The results showed firstly that running economy was significantly improved in the energy return (35.9 ml∙kg/min) compared to minimalist footwear (37.8 ml∙kg/min). In addition % carbohydrate was significantly greater in the minimalist (76.4%) in comparison to energy return footwear (72.9%). As running economy was improved and carbohydrate utilisation reduced in the energy return in comparison to minimalist footwear, the current investigation shows that these footwear are more economical when shoe mass is controlled.


Sign in / Sign up

Export Citation Format

Share Document