scholarly journals The Composition of Human Perspiration (Samuel Hyde Memorial Lecture)

1934 ◽  
Vol 27 (7) ◽  
pp. 839-848 ◽  
Author(s):  
B. A. McSwiney

Water given off by the skin is classified as insensible and sensible perspiration. Under normal conditions about 600 to 700 c.c. is evaporated from the skin in twentyfour hours. The chief physiological significance of the perspiration is to assist in regulating the body temperature. The constituents of perspiration are very variable. The average values calculated from the examination of fourteen male specimens and ten female specimens are given below:— [Formula: see text] Examination of the figures obtained for the sweat shed by rheumatic subjects shows no marked divergence from those recorded for normal subjects. Lactic acid is stated to be present in relatively large amounts in sweat, but these results have not been confirmed. Moss (1923) demonstrated the importance of the loss of chloride which occurred during continued sweating. He showed that symptoms of water-poisoning occurred when men engaged in hard work in hot places drank water freely. Hancock, Whitehouse and Haldane (1930) point out that the percentage of chloride in sweat increases markedly with duration of sweating, and suggest that water poisoning is due to an alteration in the diffusion pressure of water in the body. The secretion is under control of the nervous system, and is normally excited through stimulation of the centres by warm blood. The sweat-glands are innervated by fibres of the sympathetic system. Adrenaline has, however, no action on the glands, while pilocarpine excites and atropine paralyses. Recent investigations suggest that acetyl-choline is liberated at the nerve-endings.

In the study of the phenomena of anaphylaxis there are certain points on which some measure of agreement seems to have been attained. In the case of anaphylaxis to soluble proteins, with which alone we are directly concerned in this paper, the majority of investigators probably accept the view that the condition is due to the formation of an antibody of the precipitin type. Concerning the method, however, by which the presence of this antibody causes the specific sensitiveness, the means by which its interaction with the antibody produces the anaphylactic shock, there is a wide divergence of conception. Two main currents of speculation can be discerned. One view, historically rather the earlier, and first put forward by Besredka (1) attributes the anaphylactic condition to the location of the antibody in the body cells. There is not complete unanimity among adherents of this view as to the nature of the antibody concerned, or as to the class of cells containing it which are primarily affected in the anaphylactic shock. Besredka (2) himself has apparently not accepted the identification of the anaphylactic antibody with a precipitin, but regards it as belonging to a special class (sensibilisine). He also regards the cells of the central nervous system as those primarily involved in the anaphylactic shock in the guinea-pig. Others, including one of us (3), have found no adequate reason for rejecting the strong evidence in favour of the precipitin nature of the anaphylactic antibody, produced by Doerr and Russ (4), Weil (5), and others, and have accepted and confirmed the description of the rapid anaphylactic death in the guinea-pig as due to a direct stimulation of the plain-muscle fibres surrounding the bronchioles, causing valve-like obstruction of the lumen, and leading to asphyxia, with the characteristic fixed distension of the lungs, as first described by Auer and Lewis (6), and almost simultaneously by Biedl and Kraus (7). But the fundamental conception of anaphylaxis as due to cellular location of an antibody, and of the reaction as due to the union of antigen and antibody taking place in the protoplasm, is common to a number of workers who thus differ on details.


PEDIATRICS ◽  
1963 ◽  
Vol 32 (4) ◽  
pp. 691-702
Author(s):  
Sid Robinson

The central body temperature of a man rises gradually during the first half hour of a period of work to a higher level and this level is precisely maintained until the work is stopped; body temperature then slowly declines to the usual resting level. During prolonged work the temperature regulatory center in the hypothalamus appears to be reset at a level which is proportional to the intensity of the work and this setting is independent of environmental temperature changes ranging from cold to moderately warm. In hot environments the resistance to heat loss may be so great that all of the increased metabolic heat of work cannot be dissipated and the man's central temperature will rise above the thermostatic setting. If this condition of imbalance is continued long enough heat stroke will ensue. We have found that in a 3 mile race lasting only 14 minutes on a hot summer day a runner's rectal temperature may rise to 41.1°C., with heat stroke imminent. The physiological regulation of body temperature of men in warm environments and during the increased metabolic heat production of work is dependent on sweating to provide evaporative cooling of the skin, and on adjustments of cutaneous blood flow which determine the conductance of heat from the deeper tissues to the skin. The mechanisms of regulating these responses during work are complex and not entirely understood. Recent experiments carried out in this laboratory indicate that during work, sweating may be regulated by reflexes originating from thermal receptors in the veins draining warm blood from the muscles, summated with reflexes from the cutaneous thermal receptors, both acting through the hypothalamic center, the activity of which is increased in proportion to its own temperature. At the beginning of work the demand for blood flow to the muscles results in reflex vasoconstriction in the skin. As the body temperature rises the thermal demand predominates and the cutaneous vessels dilate, increasing heat conductance to the skin. Large increments in cardiac output and compensatory vasoconstriction in the abdominal viscera make these vascular adjustments in work possible without circulatory embarrassment.


PEDIATRICS ◽  
1973 ◽  
Vol 52 (3) ◽  
pp. 449-451
Author(s):  
Barry H. Rumack

The increased incidence of poisoning by overdoses of commonly used drugs with anticholinergic properties (Table I) and the general lack of knowledge concerning a specific treatment for these poisons warrants a summary of the problem at this time. Some plants containing anticholinergic alkaloids are also included in this group as they may also be taken intentionally or accidentally. Drugs with anticholinergic properties primanly antagonize acetylcholine competitively at the neuroreceptor site. Cardiac muscle, exocrine glands, and smooth muscle are most markedly affected.1 Action of the inhibitors is overcome by increasing the level of acetylcholine naturally generated in the body through inhibiting the enzyme (choline esterase) which normally prevents accumulation of excess acetylcholine. It does this by hydrolyzing that compound to inactive acetic acid and choline. Agents which inhibit this enzyme, so that acetylcholine accumulates at the neuroreceptor sites, are called anticholine esterases. Physostigmine, one of the anticholine esterases which is a tertiary amine, crosses into the central nervous system and can reverse both central and peripheral anticholinergic actions2. Neostigmine and pyridostigmine are also anticholine esterases but they are quaternary amines and are capable of acting only outside the central nervous system because of solubility and ionization characteristics. The anticholinergic syndrome has both central and peripheral signs and symptoms. Central toxic effects include anxiety, delirium, disorientation, hallucinations, hyperactivity, and seizures.2 Severe poisoning may produce coma, medullary paralysis, and death. Peripheral taxicity is characterized by tachycardia, hyperpyrexia, mydriasis, vasodilatation, urinary retention, diminution of gastrointestinal motility, decrease of secretion in salivary and sweat glands, and loss of secretions in the pharynx, bronchi, and nasal passages.


1960 ◽  
Vol 15 (3) ◽  
pp. 445-448 ◽  
Author(s):  
Arthur J. Moss ◽  
Bruce E. Bradley

The body temperature of five normal subjects was raised to levels above 100.0°F through the use of a rubberized anti-exposure suit. The induced hyperkinetic cardiovascular state was studied on an ultra-low-frequency force ballistocardiogram. The ejection deflection (HI wave) consistently increased in amplitude and became more vertical during the hyperthermic state. The time duration from the onset of ventricular ejection to the J wave peak generally was shortened. These changes were interpreted in terms of the known cardiovascular response to the hyperkinetic state. Diminished peripheral resistance and its sequelae seemed to play a major role in the ballistocardiographic changes seen with hyperthermia. Submitted on November 23, 1959


1959 ◽  
Vol 52 (1) ◽  
pp. 66-71 ◽  
Author(s):  
G. C. Taneja

Two calves (Aberdeen Angus and American Brahman) were used exposed to different combinations of wet- and dry-bulb temperatures in a psychromatric chamber at the Physiology Department of the University of Queensland. These animals were 7–8 months old when first exposed to heat.Effect of various drugs affecting the sympathetic nervous system (adrenaline, noradrenaline, Dibenamine, Priscol, atropine and acetylcholine) on the rate of cutaneous evaporation in calves was tested. Cutaneous evaporation was measured by means of a capsule before and after the administration of these drugs.Cutaneous evaporation increased with the introduction of adrenaline and was suppressed by the administration of Dibenamine. Noradrenaline and Priscol had no appreciable effect. Acetylcholine failed to stimulate sweating and atropine did not block the sweat glands.Sweat glands of cattle were, therefore, found to be functional and their innervation adrenergic. Cattle use sweat to prevent body temperature from rising, yet the amount of sweat secreted is not large enough to allow cattle to maintain thermoneutrality at high air temperatures.


1984 ◽  
Vol 67 (4) ◽  
pp. 433-437 ◽  
Author(s):  
B. P. O'malley ◽  
A. Richardson ◽  
N. Cook ◽  
S. Swart ◽  
F. D. Rosenthal

1. The diurnal rhythms of body temperature and serum thyrotrophin (TSH) levels in euthyroid individuals behaved inversely to one another. 2. An artificially induced rise in the body temperature of these individuals was accompanied by a fall in serum thyrotrophin levels, the amplitudes of their respective rhythms decreasing simultaneously. 3. There was a marked correlation between the degrees of change in body temperature and circulating thyrotrophin levels respectively during warming. 4. In normal subjects manipulation of the diurnal rhythm of body temperature brings about inverse alterations in the thyrotrophin rhythm.


The object of this enquiry is to find out how much heat can be gained, or cold lost from the body, by the local cooling or warming of a small part, by cooling the hands in a stream of cold water, warming the feet in a hot foot­ bath, or by a foot-warmer. In order to secure the beneficial effect of open windows, the breathing of cool air of low-vapour tension, and stimulation of body metabolism by such air ventilating the clothed and naked parts of the skin, the general heating of rooms by hot-water coils might be replaced by small heaters kept a few degrees above body temperature and locally applied to each individual, and each under the individual’s control. Electric heaters have been used by aeroplanists placed beneath their outer garments. One of us(l) recently published results showing that heating or cooling the hands can effectively heat or cool the whole body. We record further experiments of a like nature.


2020 ◽  
Author(s):  
Joanna M. Reinhold ◽  
Ryan Shaw ◽  
Chloé Lahondère

AbstractMosquitoes are regarded as one of the most dangerous animals on earth. As they are responsible for the spread of a wide range of both human and animal diseases, research of the underlying mechanisms of their feeding behavior and physiology is critical. Among disease vector mosquitoes, Culex quinquefasciatus, which is a known carrier of West Nile virus and Western Equine Encephalitis, remains relatively understudied. As blood sucking insects, adaptations (either at the molecular or physiological level) while feeding on warm blood is crucial to their survival, as overheating can result in death due to heat stress. Our research aims to study how Cx. quinquefasciatus copes with heat associated with the ingestion of a warm blood-meal and to possibly uncover the adaptations this species uses to avoid thermal stress. Through the use of thermographic imaging, we analyzed the body temperature of Cx. quinquefasciatus while blood feeding. Infrared thermography has allowed us to identify a cooling strategy, evaporative cooling via the production of fluid droplets, and an overall low body temperature in comparison to the blood temperature during feeding. Understanding Cx. quinquefasciatus’ adaptations and various strategies that they employ to reduce their body temperature while blood-feeding constitutes the first step towards the discovery of potential targets of opportunity for their control.HighlightsMosquitoes have evolved to cope with heat stress associated with warm blood ingestionCulex quinquefasciatus displays heterothermy while blood-feedingThe abdominal temperature decreases due to evaporative cooling using urine dropletsOverall, the mosquito body temperature is much cooler than the ingested blood


2020 ◽  
Vol 26 (2) ◽  
pp. 58-62
Author(s):  
Mihai Larisia ◽  
Cuzic Viviana ◽  
Pantazi Cosmin ◽  
Ungureanu Adina ◽  
Frecus Corina ◽  
...  

Abstract Ectodermal dysplasia is a group of conditions characterized by abnormal development of ectodermal tissues including the skin, hair, teeth and sweat glands. Anhidrotic ectodermal dysplasia (Christ-Siemens-Touraine Syndrome) is only one of this large and heterogenous group, but is the most frequent. An inability to sweat (anhidrosis) can lead to high body temperature (hyperthermia), because the body cannot cool itself by evaporating sweat. The authors present the diagnostic difficulties in an infant with this condition, in which prolonged fever was the dominant symptom.


2021 ◽  
Vol 100 (1) ◽  
pp. 55-59
Author(s):  
Nikolay A. Kashuba

Introduction. One of the features of lead is its high ability to disintegrate and significantly contaminate the environment. The contamination of hands or the whole body with lead creates a high probability of penetrating micro- and nanoparticles through the skin into the body. Nowadays, this process is not sufficiently studied. There is evidence that inorganic compounds or metallic particles of lead can penetrate through the skin into a human body. Material and methods. centrifuge 10000 rpm, laser emitter (wavelength 625-740 nm), optical microscope, voltampermetric analyzer ABA-2, Analysette 12 Dyna Sizer, magnetic stirrer, distiller, Na2S solution. The studies were conducted in 2017-2018 among the workers of battery sections of technical service stations in Ternopol - 17 people. The research results were processed by the statistical package SPSS 19. Results. The process of mechanical contamination by the skin with lead, rejection of micro particles from the surface of lead, and, to a lesser extent, ultrafine nanoparticles, which can penetrate the sweat glands, was established to occur. The studies have shown in the washings from the palms particles’ skin are detected mainly in the size of 1 μm - 100 nm. In the process of finding the particles of lead in the sweat glands, their length decreases to Nanoscale, allowing them freely entering the body. The decrease in particle size in the sweat glands occurs due to the formation of soluble lead compounds. Presumably, the main chemical contributing to this process is lactic acid. With increasing exposure, the size of lead particles in the sweat glands decreases. Intensive cleaning of the skin surface by mechanical methods, and detergents, followed by contamination with lead, promotes the penetration of lead particles into the sweat glands and its further spread in the body. The intense physical activity was established to contribute to a decrease in particle size, which suggests chemical interaction of lead with lactic acid and the formation of soluble lead lactate. The assumption is confirmed by studies of the composition of sweat, which is detected lead lactate. Conclusion. The lead ability to penetrating a human body transcutaneously in the form of nanoparticles and soluble compounds has been proven. Intense physical activity facilitates the penetration of lead into the body.


Sign in / Sign up

Export Citation Format

Share Document