scholarly journals A calculation method and experiment study of high-pressure common rail injection rate with solenoid injectors

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110261
Author(s):  
Ziguang Gao ◽  
Guoxiu Li ◽  
Chunlong Xu ◽  
Hongmeng Li ◽  
Min Wang

The high-pressure common rail system has been widely used owing to its precise control of fuel injection rate profile, which plays a decisive role in cylinder combustion, atomization, and emission. The fuel injection rate profile of high-pressure common rail system was studied, and a fuel injection rate profile calculation model is proposed. The model treats the injector as a black box. Some measured data are needed to calculate the parameters in the model. The rise and fall of injection rate is regarded as trigonometric function to reduce the complexity and increase the accuracy. The model was verified using two different types of fuel injectors. The model calculation results were evaluated under various data input conditions. The results show that the model has good applicability to different input data and injectors. In addition, because the model building requires a large amount of experimental data, a comprehensive analysis of various input data was also conducted. The injection profile was analyzed from a new perspective and the regularity of injection rate profile was established.

Author(s):  
Kun Yang ◽  
Lei Zhou ◽  
Gang Wang ◽  
Tao Nie ◽  
Xin Wu

In order to overcome the difficulties of high pressure source design and parts integration in the injector, realizing the ultra high pressure injection and controllable fuel injection rate, an ultra high pressure common rail system based on domestic basic materials and manufacturing technology level was proposed and designed. The working principle of this system was first introduced; the performance test bench of ultra high pressure common rail system was built. Then, the influence of pressure-amplifier device structure parameters on the pressurization pressure peak was analyzed quantitatively, and on the basis of selecting the most appropriate combination of parameters, the pressure and fuel injection rate control characteristics were conducted. The results show that ultra high pressure common rail system can magnify fuel pressure to ultra high pressure state (more than 200 MPa) and by changing the control signal timing of pressure-amplifier device and injector solenoid valve, the flexible and controllable fuel injection rate can be achieved. Under the condition of the same pressurization ratio, the peak value of pressurization pressure increases gradually, and with the increase of pressurization ratio, the increasing trend of the pressurization pressure peak value is nonlinear. At the same time, under the same condition of spring preload, the greater of the spring stiffness, the higher of the rail base pressure can bear, that means the pressure-amplifier device can achieve pressurization at a higher base pressure. But if the spring stiffness is too large, the solenoid valve of pressure-amplifier device will not be opened due to insufficient electromagnetic force, so the specific selection should be considered in a compromise.


Measurement ◽  
2021 ◽  
Vol 170 ◽  
pp. 108716
Author(s):  
Quan Dong ◽  
Xiyu Yang ◽  
Hao Ni ◽  
Jingdong Song ◽  
Changhao Lu ◽  
...  

2020 ◽  
pp. 146808742092161
Author(s):  
Ying Hu ◽  
Jianguo Yang ◽  
Nao Hu

The structure and performance of the common-rail system for the marine diesel engine are different from those used for automobile applications, resulting from the larger accumulator volume and the single injection volume. According to the characteristics of the distributed structure of the accumulator volume, a novel optimisation idea to improve the steady-state performance of the high-pressure common-rail fuel injection system designed for a marine engine retrofitting is proposed. The study concentrates on the optimisation in the hydraulic layouts and the structure parameters to manage the energy stored in the pressure waves. First, the test rig was established to study and evaluate the steady-state performance of the high-pressure common-rail system. Second, the experiments of rail orders and injection sequences were carried out to study the influence of different hydraulic layouts on the energy distribution of pressure waves in the system. Meanwhile, a comprehensive and detailed model of the high-pressure common-rail system was built to investigate the structural parameters of a rail-to-injector pipe. Based on the high-pressure common-rail system model, the modified multi-objective genetic algorithm was employed to seek the trade-off between the consistency of the injection volume and the reduction of the rail pressure fluctuation. Results show that a uniform distribution of multiple rails in one cycle contributed to reducing the amplitude of the rail pressure oscillation. In the parameter ranges of this study, a longer length and larger diameter of the rail-to-injector pipe could reduce the standard deviation of the injection volume and the rail pressure fluctuation rate simultaneously.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098362
Author(s):  
Ziguang Gao ◽  
Guoxiu Li ◽  
Hongmeng Li ◽  
Chunlong Xu ◽  
Yanhong Kang

High pressure common rail system can precisely control the injection time and injection pressure to improve the thermal efficiency of the engine. The injection characteristics of the system can affect the combustion and emission process of the engine. Injection stability is defined as variation characteristics of injection. This could have an unignored influence on combustion and engine output, while few study has been published. The primary objective is to establish evaluation systems and methods for injection stability. Then to study injection stability of the high pressure common rail system. Firstly, several parameters that have an important influence on the emission and combustion are identified. Based on the characteristics data obtained, it is verified that the stability parameters are in accordance with the normal distribution. Then, the five characteristic stability parameters of close speed of injection, cycle injection mass, injection delay, maximum injection rate and open speed of injection were quantitatively analyzed by using range, relative range, kurtosis and variance. It is found that the close speed of injection is greatly depend on injection pressure, the range of close speed varies from 1.8 to 5.1 mg/ms when rail pressure varies from 60 MPa to 160 MPa at 0.6 ms energizing time. The stability of injection mass depends on energizing time, the relative range in short energizing time can be four times than long energizing time. The maximum injection rate has similar characteristics with injection mass, it is also depends on energizing time. The range of maximum injection rate is reduced from the average of 0.6–0.7 mg/ms to 0.3 or even 0.2 mg/ms with the increase of energizing time. The injection delay and open speed of injection seems to be greatly affected by pressure fluctuation, since the observed data present complex rules. Pressure fluctuation in common rail can affect injection stability a lot.


Author(s):  
Lei Zhou ◽  
Kun Yang ◽  
Zhenming Liu ◽  
Yin Wang ◽  
Miao Chi

On the basis of introducing the implementation method of variable fuel injection rate, the calculation model of a single-cylinder ultra high pressure common rail diesel engine was built, and the accuracy of this model was verified with experiments; then the effects of different fuel injection rates and fuel injection advanced angles on the performance of the ultra high pressure common rail diesel engine were analyzed with this model. The results show that the variable fuel injection rate can be realized by adjusting the opening time of electric-controlled pressure amplifier and injector solenoid valve in the ultra high pressure common rail system. With the lagging of pressurization time, the cylinder pressure, cylinder temperature, heat release rate and NOx emissions of the diesel engine decrease, while the soot emission rises. The ultra high pressure rectangle injection rate can make the diesel engine acquire best power and economy performance. With the increasing of fuel injection advanced angle, the cylinder pressure, cylinder temperature, heat release rate and NOx emission of the diesel engine rise, while the soot emission decreases first and then rises, the too small or too large fuel injection advanced angle can both reduce the power and economy performance of the diesel engine. The high fuel injection rate that matches small fuel injection advanced angle can improve power output and reduce fuel consumption of the diesel engine, and there is an optimal fuel injection advanced angle for each fuel injection rate to make the diesel engine performance achieve the best.


Sign in / Sign up

Export Citation Format

Share Document