Limit of Fuel Injection Rate in the Common Rail System under Ultra-High Pressures

2020 ◽  
Vol 21 (3) ◽  
pp. 649-656 ◽  
Author(s):  
Jianhui Zhao ◽  
Leonid Grekhov ◽  
Pengfei Yue
Author(s):  
Kun Yang ◽  
Lei Zhou ◽  
Gang Wang ◽  
Tao Nie ◽  
Xin Wu

In order to overcome the difficulties of high pressure source design and parts integration in the injector, realizing the ultra high pressure injection and controllable fuel injection rate, an ultra high pressure common rail system based on domestic basic materials and manufacturing technology level was proposed and designed. The working principle of this system was first introduced; the performance test bench of ultra high pressure common rail system was built. Then, the influence of pressure-amplifier device structure parameters on the pressurization pressure peak was analyzed quantitatively, and on the basis of selecting the most appropriate combination of parameters, the pressure and fuel injection rate control characteristics were conducted. The results show that ultra high pressure common rail system can magnify fuel pressure to ultra high pressure state (more than 200 MPa) and by changing the control signal timing of pressure-amplifier device and injector solenoid valve, the flexible and controllable fuel injection rate can be achieved. Under the condition of the same pressurization ratio, the peak value of pressurization pressure increases gradually, and with the increase of pressurization ratio, the increasing trend of the pressurization pressure peak value is nonlinear. At the same time, under the same condition of spring preload, the greater of the spring stiffness, the higher of the rail base pressure can bear, that means the pressure-amplifier device can achieve pressurization at a higher base pressure. But if the spring stiffness is too large, the solenoid valve of pressure-amplifier device will not be opened due to insufficient electromagnetic force, so the specific selection should be considered in a compromise.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110261
Author(s):  
Ziguang Gao ◽  
Guoxiu Li ◽  
Chunlong Xu ◽  
Hongmeng Li ◽  
Min Wang

The high-pressure common rail system has been widely used owing to its precise control of fuel injection rate profile, which plays a decisive role in cylinder combustion, atomization, and emission. The fuel injection rate profile of high-pressure common rail system was studied, and a fuel injection rate profile calculation model is proposed. The model treats the injector as a black box. Some measured data are needed to calculate the parameters in the model. The rise and fall of injection rate is regarded as trigonometric function to reduce the complexity and increase the accuracy. The model was verified using two different types of fuel injectors. The model calculation results were evaluated under various data input conditions. The results show that the model has good applicability to different input data and injectors. In addition, because the model building requires a large amount of experimental data, a comprehensive analysis of various input data was also conducted. The injection profile was analyzed from a new perspective and the regularity of injection rate profile was established.


2013 ◽  
Vol 210 ◽  
pp. 136-141 ◽  
Author(s):  
Sławomir Wierzbicki ◽  
Michał Śmieja

The electromagnetic injector in the Common Rail system is the actuator directly responsible for fuel injection. Its proper operation is enabled by ensuring appropriately shaped changes of the electric signal worked out by the output stage of the controller. This paper determines the repeatability of the control signal and the possibility of using this signal for the diagnostics of the electrical part of the injector.


2021 ◽  
Vol 2 (143) ◽  
pp. 12-20
Author(s):  
Dmitriy A. Galin ◽  
◽  
Nikolay V. Rakov ◽  
Aleksandr M. Davydkin ◽  
Leonid O. Krush

Analysis of technical condition of diesels with accumulator Common Rail power supply system shows that the largest share of fuel equipment failures is associated with malfunction of high-pressure fuel injectors. The electronic engine control unit generates commands for biphasic fuel injection from each injector. Due to the wear of the injector elements, there is an uneven fuel supply to the engine cylinders and, as a rule, deterioration of its operation. (Research purpose) The research purpose is in studying the process of adjusting the fuel supply in the Common Rail system when diagnosing the engine of a Ford Transit vehicle. (Materials and methods) The most relevant method of commissioning Common Rail fuel system injectors are various service procedures, such as the Low Injection Training procedure. Authors used a scanner and appropriate software to estimate total fuel delivery at idle mode. Authors performed the study on a 2.4 liter Duratorq diesel engine. (Results and discussion) The article presents the engine parameters before and after adjustment (Small Injection Procedure). Before adjustment, two cylinders of the engine received more fuel than the other cylinders. It manifests in an increase in crankshaft speed. After the adjustment, the fuel supply to the cylinders was equalized, resulting in an equalization of crankshaft RPM, reduced vibration and noise. (Conclusions) The study showed that fuel adjustment and Low Injection Training should be a must for engine diagnostics. Correction is effective if the value of injection discrepancy is no more than 5 mg/stroke.


2020 ◽  
Vol 15 (2) ◽  
pp. 92-95
Author(s):  
Vladimir Ivanov ◽  
Aleksandr Semenov ◽  
Vladislav Gavrilov ◽  
Aleksey Novikov ◽  
M. Volhonov

In engineering practice, forecasting is considered to be the most effective methods for assessing reliability indicators and determining expected technical and economic indicators, taking into account the technical level of improving the diesel power system. The solution of such problems requires a description of changes in the parameters of objects at different points in time. The purpose of the research is to predict the possible values of the fuel injection pressure of the Common Rail system for the near future for the timely creation of operating conditions, maintenance and repair measures. A statistical method was used to predict changes in the fuel injection pressure in the diesel power system. The forecasting technique included the stages of analyzing the initial information, choosing the analytical dependence of the change in the considered parameter in the past, extrapolating the resulting dependence for the forecast period and evaluating the results. The choice of analytical dependences of changes in the estimated pressure value was carried out by the method of least squares. The degree of connection between the considered analytical dependence and the line constructed from the initial data was determined by the value of the correlation coefficient. As the technical, economic and environmental requirements become more stringent, the requirements for the power supply system of internal combustion engines are growing, which necessitates an increase in the functionality of the fuel equipment, primarily in terms of the value of the fuel injection pressure. The paper considers the results of a predictive assessment of possible values of injection pressure of the Common Rail fuel system. The results of the study make it possible to predict an increase in the fuel injection pressure of the Common Rail system by 2026 up to 300 MPa. To ensure high indicators of technical readiness of the enterprises of technical service of diesel fuel equipment, it is necessary to take into account possible changes in the values of the fuel injection pressure in the future


2018 ◽  
Vol 224 ◽  
pp. 02037 ◽  
Author(s):  
Igor Taratorkin ◽  
Victor Derzhanskii ◽  
Alexander Taratorkin

The paper studies formation of the power-train elements dynamic loading at engine starting, shows the results of experiments and of simulation modeling and substantiates the ways of reducing dynamic loading of the mechanical system under study.


Measurement ◽  
2021 ◽  
Vol 170 ◽  
pp. 108716
Author(s):  
Quan Dong ◽  
Xiyu Yang ◽  
Hao Ni ◽  
Jingdong Song ◽  
Changhao Lu ◽  
...  

2013 ◽  
Vol 21 (4) ◽  
pp. 89-95
Author(s):  
Yunsub Sin ◽  
Geesoo Lee ◽  
Hyunchul Kim ◽  
Sangshin Kwak ◽  
Suk Shin Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document