Spectrophotometric prediction of pre-colored fiber blends with a hybrid model based on artificial neural network and Stearns–Noechel model

2016 ◽  
Vol 87 (3) ◽  
pp. 296-304 ◽  
Author(s):  
Jiajia Shen ◽  
Xiang Zhou ◽  
Hui Ma ◽  
Weiguo Chen

The performance of the traditional color prediction model in the color prediction of colored fiber blends is usually not very satisfactory under a variety of conditions, due to the limitation of the trail data and the assumptions used for derivation. In contrast to the traditional model, artificial neural networks (ANN) have an excellent nonlinear mapping ability; however, they also have poor generalization ability if the training data are not sufficient. In this paper a hybrid model, called the Stearns–Noechel (S-N)–ANN model, is proposed, which combines the S-N model with the ANN model. This uses the S-N model first to build the approximate relationship between the recipe and spectrophotometric response of the color blends, followed by optimization with the ANN to achieve higher prediction accuracy and better practicability. Compared with the ANN model, the S-N–ANN model needs less training time with the same training data, yet achieves higher validation and correlation coefficients, indicating that the training of the S-N–ANN model is much easier. The average color difference of the predicted spectrum obtained with the S-N–ANN model was 0.86 CMC(2:1) unit, which was much lower than that obtained with either the ANN model (∼2.21) or the traditional S-N model (∼1.66), indicating that the S-N–ANN model is a more accurate method for the color prediction of colored fiber blends.

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1405
Author(s):  
Jimmy Aurelio Rosales-Huamani ◽  
Roberth Saenz Perez-Alvarado ◽  
Uwe Rojas-Villanueva ◽  
Jose Luis Castillo-Sequera

Over the years, various models have been developed in the stages of the mining process that have allowed predicting and enhancing results, but it is the breakage, the variable that connects all the activities of the mining process from the point of view of costs (drilling, blasting, loading, hauling, crushing and grinding). To improve this process, we have designed and developed a computational model based on an Artificial Neural Network (ANN), the same that was built using the most representative variables such as the properties of explosives, the geomechanical parameters of the rock mass, and the design parameters of drill-blasting. For the training and validation of the model, we have taken the data from a copper mine as reference located in the north of Chile. The ANN architecture was of the supervised type containing: an input layer, a hidden layer with 13 neurons and an output layer that includes the sigmoid activation function with symmetrical properties for optimal model convergence. The ANN model was fed-back in its learning with training data until it becomes perfected, and due to the experimental results obtained, it is a valid prediction option that can be used in future blasting of ore deposits with similar characteristics using the same representative variables considered. Therefore, it constitutes a valid alternative for predicting rock breakage, given that it has been experimentally validated, with moderately reliable results, providing higher correlation coefficients than traditional models used, and with the additional advantage that an ANN model provides, due to its ability to learn and recognize collected data patterns. In this way, using this computer model we can obtain satisfactory results that allow us to predict breakage in similar scenarios, providing an alternative for evaluating the costs that this entails as a contribution to the work.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2019 ◽  
Vol 8 (4) ◽  
pp. 3902-3910

In the field of mobile robotics, path planning is one of the most widely-sought areas of interest due to its nature of complexity, where such issue is also practically evident in the case of mobile robots used for waste disposal purposes. To overcome issues on path planning, researchers have studied various classical and heuristic methods, however, the extent of optimization applicability and accuracy still remain an opportunity for further improvements. This paper presents the exploration of Artificial Neural Networks (ANN) in characterizing the path planning capability of a mobile waste-robot in order to improve navigational accuracy and path tracking time. The author utilized proximity and sound sensors as input vectors, dual H-bridge Direct Current (DC) motors as target vectors, and trained the ANN model using Levenberg-Marquardt (LM) and Scaled Conjugate (SCG) algorithms. Results revealed that LM was significantly more accurate than SCG algorithm in local path planning with Mean Square Error (MSE) values of 1.75966, 2.67946, and 2.04963, and Regression (R) values of 0.995671, 0.991247, and 0.983187 in training, testing, and validation environments, respectively. Furthermore, based on simulation results, LM was also found to be more accurate and faster than SCG with Pearson R correlation coefficients of rx=.975, nx=6, px=0.001 and ry=.987, ny=6, py=0.000 and path tracking time of 8.47s.


Author(s):  
J. V. Ratnam ◽  
Masami Nonaka ◽  
Swadhin K. Behera

AbstractThe machine learning technique, namely Artificial Neural Networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January and February for the period 1949/50 to 2019/20. The predictions are made for the four regions Hokkaido, North, Central and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN predicted SAT anomalies are compared with that of ensemble mean of 8 of the North American Multi-Model Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83 to 2018/19. The ANN predicted SAT anomalies also have higher Hit rate and lower False alarm rate compared to the NMME predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.


2010 ◽  
Vol 658 ◽  
pp. 141-144 ◽  
Author(s):  
Jun Hui Yu ◽  
De Ning Zou ◽  
Ying Han ◽  
Zhi Yu Chen

In this paper, artificial neural networks (ANN) has been proposed to determine the stresses of 13Cr supermartensitic stainless steel (SMSS) welds based on various deformation temperatures and strains using experimental data from tensile tests. The experiments provided the required data for training and testing. A three layer feed-forward network, deformation temperature and strain as input parameters while stress as the output, was trained with automated regularization (AR) algorithm for preventing overfitting. The results showed that the best fitting training dataset was obtained with ten units in the hidden layer, which made it possible to predict stress accurately. The correlation coefficients (R-value) between experiments and prediction for the training and testing dataset were 0.9980 and 0.9943, respectively, the biggest absolute relative error (ARE) was 6.060 %. As seen that the ANN model was an efficient quantitative tool to evaluate and predict the deformation behavior of type 13Cr SMSS welds during tensile test under different temperatures and strains.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
R. Manjula Devi ◽  
S. Kuppuswami ◽  
R. C. Suganthe

Artificial neural network has been extensively consumed training model for solving pattern recognition tasks. However, training a very huge training data set using complex neural network necessitates excessively high training time. In this correspondence, a new fast Linear Adaptive Skipping Training (LAST) algorithm for training artificial neural network (ANN) is instituted. The core essence of this paper is to ameliorate the training speed of ANN by exhibiting only the input samples that do not categorize perfectly in the previous epoch which dynamically reducing the number of input samples exhibited to the network at every single epoch without affecting the network’s accuracy. Thus decreasing the size of the training set can reduce the training time, thereby ameliorating the training speed. This LAST algorithm also determines how many epochs the particular input sample has to skip depending upon the successful classification of that input sample. This LAST algorithm can be incorporated into any supervised training algorithms. Experimental result shows that the training speed attained by LAST algorithm is preferably higher than that of other conventional training algorithms.


2014 ◽  
Vol 522-524 ◽  
pp. 44-47 ◽  
Author(s):  
Dan Xue ◽  
Qian Liu

Air quality has been deteriorated seriously in Shanghai as a result of urbanization and modernization. A three-layer Artificial Neural Network (ANN) model was developed to forecast the surface SO2 concentration. The subsequent SO2 concentration being the output parameter of this study was estimated by six input parameters such as preceding SO2 concentrations, average daily temperature, sea-level pressure, relative humidity, average daily wind speed and average daily precipitation. Levenberg-Marquarde (LM) backpropagation was tested as the best algorithm and the optimal neuron number for the LM algorithm was found to be eight. ANN testing outputs were proven to be satisfactory with correlation coefficients of about 0.765.


2014 ◽  
Vol 7 (4) ◽  
pp. 132-143
Author(s):  
ABBAS M. ABD ◽  
SAAD SH. SAMMEN

The prediction of different hydrological phenomenon (or system) plays an increasing role in the management of water resources. As engineers; it is required to predict the component of natural reservoirs’ inflow for numerous purposes. Resulting prediction techniques vary with the potential purpose, characteristics, and documented data. The best prediction method is of interest of experts to overcome the uncertainty, because the most hydrological parameters are subjected to the uncertainty. Artificial Neural Network (ANN) approach has adopted in this paper to predict Hemren reservoir inflow. Available data including monthly discharge supplied from DerbendiKhan reservoir and rain fall intensity falling on the intermediate catchment area between Hemren-DerbendiKhan dams were used.A Back Propagation (LMBP) algorithm (Levenberg-Marquardt) has been utilized to construct the ANN models. For the developed ANN model, different networks with different numbers of neurons and layers were evaluated. A total of 24 years of historical data for interval from 1980 to 2004 were used to train and test the networks. The optimum ANN network with 3 inputs, 40 neurons in both two hidden layers and one output was selected. Mean Squared Error (MSE) and the Correlation Coefficient (CC) were employed to evaluate the accuracy of the proposed model. The network was trained and converged at MSE = 0.027 by using training data subjected to early stopping approach. The network could forecast the testing data set with the accuracy of MSE = 0.031. Training and testing process showed the correlation coefficient of 0.97 and 0.77 respectively and this is refer to a high precision of that prediction technique.


2005 ◽  
Vol 7 (4) ◽  
pp. 291-296 ◽  
Author(s):  
P. Hettiarachchi ◽  
M. J. Hall ◽  
A. W. Minns

The last decade has seen increasing interest in the application of Artificial Neural Networks (ANNs) for the modelling of the relationship between rainfall and streamflow. Since multi-layer, feed-forward ANNs have the property of being universal approximators, they are able to capture the essence of most input–output relationships, provided that an underlying deterministic relationship exists. Unfortunately, owing to the standardisation of inputs and outputs that is required to run ANNs, a problem arises in extrapolation: if the training data set does not contain the maximum possible output value, an unmodified network will be unable to synthesise this peak value. The occurrence of high magnitude, low frequency events within short periods of record is largely fortuitous. Therefore, the confidence in the neural network model can be greatly enhanced if some methodology can be found for incorporating domain knowledge about such events into the calibration and verification procedure in addition to the available measured data sets. One possible form of additional domain knowledge is the Estimated Maximum Flood (EMF), a notional event with a small but non-negligible probability of exceedence. This study investigates the suitability of including an EMF estimate in the training set of a rainfall–runoff ANN in order to improve the extrapolation characteristics of the network. A study has been carried out in which EMFs have been included, along with recorded flood events, in the training of ANN models for six catchments in the south west of England. The results demonstrate that, with prior transformation of the runoff data to logarithms of flows, the inclusion of domain knowledge in the form of such extreme synthetic events improves the generalisation capabilities of the ANN model and does not disrupt the training process. Where guidelines are available for EMF estimation, the application of this approach is recommended as an alternative means of overcoming the inherent extrapolation problems of multi-layer, feed-forward ANNs.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Ahmad Al-AbdulJabbar ◽  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny ◽  
Mahmoud Abughaban

This study presented an empirical correlation to estimate the drilling rate of penetration (ROP) while drilling into a sandstone formation. The equation developed in this study was based on the artificial neural networks (ANN) which was learned to assess the ROP from the drilling mechanical parameters. The ANN model was trained on 630 datapoints collected from five different wells; the suggested equation was then tested on 270 datapoints from the same training wells and then validated on three other wells. The results showed that, for the training data, the learned ANN model predicted the ROP with an AAPE of 7.5%. The extracted equation was tested on data gathered from the same training wells where it estimated the ROP with AAPE of 8.1%. The equation was then validated on three wells, and it determined the ROP with AAPEs of 9.0%, 10.7%, and 8.9% in Well-A, Well-B, and Well-D, respectively. Compared with the available empirical equations, the equation developed in this study was most accurate in estimating the ROP.


Sign in / Sign up

Export Citation Format

Share Document