Modeling of the Stress in 13Cr Supermartensitic Stainless Steel Welds by Artificial Neural Network

2010 ◽  
Vol 658 ◽  
pp. 141-144 ◽  
Author(s):  
Jun Hui Yu ◽  
De Ning Zou ◽  
Ying Han ◽  
Zhi Yu Chen

In this paper, artificial neural networks (ANN) has been proposed to determine the stresses of 13Cr supermartensitic stainless steel (SMSS) welds based on various deformation temperatures and strains using experimental data from tensile tests. The experiments provided the required data for training and testing. A three layer feed-forward network, deformation temperature and strain as input parameters while stress as the output, was trained with automated regularization (AR) algorithm for preventing overfitting. The results showed that the best fitting training dataset was obtained with ten units in the hidden layer, which made it possible to predict stress accurately. The correlation coefficients (R-value) between experiments and prediction for the training and testing dataset were 0.9980 and 0.9943, respectively, the biggest absolute relative error (ARE) was 6.060 %. As seen that the ANN model was an efficient quantitative tool to evaluate and predict the deformation behavior of type 13Cr SMSS welds during tensile test under different temperatures and strains.

2007 ◽  
Vol 7 (5) ◽  
pp. 557-570 ◽  
Author(s):  
M. C. Tunusluoglu ◽  
C. Gokceoglu ◽  
H. Sonmez ◽  
H. A. Nefeslioglu

Abstract. Various statistical, mathematical and artificial intelligence techniques have been used in the areas of engineering geology, rock engineering and geomorphology for many years. However, among the techniques, artificial neural networks are relatively new approach used in engineering geology in particular. The attractiveness of ANN for the engineering geological problems comes from the information processing characteristics of the system, such as non-linearity, high parallelism, robustness, fault and failure tolerance, learning, ability to handle imprecise and fuzzy information, and their capability to generalize. For this reason, the purposes of the present study are to perform an application of ANN to a engineering geology problem having a very large database and to introduce a new approach to accelerate convergence. For these purposes, an ANN architecture having 5 neurons in one hidden layer was constructed. During the training stages, total 40 000 training cycles were performed and the minimum RMSE values were obtained at approximately 10 000th cycle. At this cycle, the obtained minimum RMSE value is 0.22 for the second training set, while that of value is calculated as 0.064 again for the second test set. Using the trained ANN model at 10 000th cycle for the second random sampling, the debris source area susceptibility map was produced and adjusted. Finally, a potential debris source susceptibility map for the study area was produced. When considering the field observations and existing inventory map, the produced map has a high prediction capacity and it can be used when assessing debris flow hazard mitigation efforts.


2019 ◽  
Vol 8 (4) ◽  
pp. 3902-3910

In the field of mobile robotics, path planning is one of the most widely-sought areas of interest due to its nature of complexity, where such issue is also practically evident in the case of mobile robots used for waste disposal purposes. To overcome issues on path planning, researchers have studied various classical and heuristic methods, however, the extent of optimization applicability and accuracy still remain an opportunity for further improvements. This paper presents the exploration of Artificial Neural Networks (ANN) in characterizing the path planning capability of a mobile waste-robot in order to improve navigational accuracy and path tracking time. The author utilized proximity and sound sensors as input vectors, dual H-bridge Direct Current (DC) motors as target vectors, and trained the ANN model using Levenberg-Marquardt (LM) and Scaled Conjugate (SCG) algorithms. Results revealed that LM was significantly more accurate than SCG algorithm in local path planning with Mean Square Error (MSE) values of 1.75966, 2.67946, and 2.04963, and Regression (R) values of 0.995671, 0.991247, and 0.983187 in training, testing, and validation environments, respectively. Furthermore, based on simulation results, LM was also found to be more accurate and faster than SCG with Pearson R correlation coefficients of rx=.975, nx=6, px=0.001 and ry=.987, ny=6, py=0.000 and path tracking time of 8.47s.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


Author(s):  
J. V. Ratnam ◽  
Masami Nonaka ◽  
Swadhin K. Behera

AbstractThe machine learning technique, namely Artificial Neural Networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January and February for the period 1949/50 to 2019/20. The predictions are made for the four regions Hokkaido, North, Central and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN predicted SAT anomalies are compared with that of ensemble mean of 8 of the North American Multi-Model Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83 to 2018/19. The ANN predicted SAT anomalies also have higher Hit rate and lower False alarm rate compared to the NMME predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.


2013 ◽  
Vol 69 (4) ◽  
pp. 768-774 ◽  
Author(s):  
André L. N. Mota ◽  
Osvaldo Chiavone-Filho ◽  
Syllos S. da Silva ◽  
Edson L. Foletto ◽  
José E. F. Moraes ◽  
...  

An artificial neural network (ANN) was implemented for modeling phenol mineralization in aqueous solution using the photo-Fenton process. The experiments were conducted in a photochemical multi-lamp reactor equipped with twelve fluorescent black light lamps (40 W each) irradiating UV light. A three-layer neural network was optimized in order to model the behavior of the process. The concentrations of ferrous ions and hydrogen peroxide, and the reaction time were introduced as inputs of the network and the efficiency of phenol mineralization was expressed in terms of dissolved organic carbon (DOC) as an output. Both concentrations of Fe2+ and H2O2 were shown to be significant parameters on the phenol mineralization process. The ANN model provided the best result through the application of six neurons in the hidden layer, resulting in a high determination coefficient. The ANN model was shown to be efficient in the simulation of phenol mineralization through the photo-Fenton process using a multi-lamp reactor.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Kraiwut Tuntisukrarom ◽  
Raungrut Cheerarot

The objective of this work was to examine the compressive strength behavior of ground bottom ash (GBA) concrete by using an artificial neural network. Four input parameters, specifically, the water-to-binder ratio (WB), percentage replacement of GBA (PR), median particle size of GBA (PS), and age of concrete (AC), were considered for this prediction. The results indicated that all four considered parameters affect the strength development of concrete, and GBA with a high fineness can act as a good pozzolanic material. The optimal ANN model had an architecture with two hidden layers, with six neurons in the first hidden layer and one neuron in the second hidden layer. The proposed ANN-based explicit equation represented a highly accurate predictive model, for which the statistical values of R2 were higher than 0.996. Moreover, the compressive strength behavior determined using the optimal ANN model closely followed the trend lines and surface plots of the experimental results.


2014 ◽  
Vol 522-524 ◽  
pp. 44-47 ◽  
Author(s):  
Dan Xue ◽  
Qian Liu

Air quality has been deteriorated seriously in Shanghai as a result of urbanization and modernization. A three-layer Artificial Neural Network (ANN) model was developed to forecast the surface SO2 concentration. The subsequent SO2 concentration being the output parameter of this study was estimated by six input parameters such as preceding SO2 concentrations, average daily temperature, sea-level pressure, relative humidity, average daily wind speed and average daily precipitation. Levenberg-Marquarde (LM) backpropagation was tested as the best algorithm and the optimal neuron number for the LM algorithm was found to be eight. ANN testing outputs were proven to be satisfactory with correlation coefficients of about 0.765.


The use of robotics is to improvise and simplify human life. Robotic manipulators have been around for a while now and are being used in many different sectors such as industries, households, warehouses, medicine etc. Solving of inverse kinematics is one of the most complex issues faced while designing the robotic manipulator. In this research a Deep Artificial neural network (D-ANN) model is proposed to solve inverse kinematics of a 5-axis robotic manipulator with rotary joints. The D-ANN model is trained in MATLAB. Training dataset was generated using forward kinematics equations obtained easily from transformation matrix of the robotic manipulator. To validate predictions made by this model an experimental robotic arm manipulator Is fabricated. A smart camera setup has been linked to MATLAB for real time image processing and calculating the deviation of the end needle in reaching the desired target coordinate. The trained model yielded satisfactory results with ±0.03 radians error and this was also validated experimentally. This research will help the robotic manipulator reach the desired target coordinates even when one does not have enough input data.Paper Setup must be in A4 size with Margin: Top 0.7”, Bottom 0.7”, Left 0.65”, 0.65”, Gutter 0”, and Gutter Position Top. Paper must be in two Columns after Authors Name with Width 8.27”, height 11.69” Spacing 0.2”. Whole paper must be with: Font Name Times New Roman, Font Size 10, Line Spacing 1.05 EXCEPT Abstract, Keywords (Index Term), Paper Tile, References, Author Profile (in the last page of the paper, maximum 400 words), All Headings, and Manuscript Details (First Page, Bottom, left side).


2022 ◽  
Vol 52 (4) ◽  
Author(s):  
Raissa Oliveira Rocha Alves ◽  
Otávio Chedid Tomé ◽  
Pollyanna Cardoso Pereira ◽  
Camila Nair Batista Couto Villanoeva ◽  
Vanelle Maria da Silva

ABSTRACT: This research was performed to ascertain the most suitable Artificial Neural Network (ANN) model to quantify the degree of fraud in powdered milk through the addition of powdered whey via regular standard physicochemical analyses. In this study, an evaluation was done on 103 samples with different quantities of added whey powder to whole milk powder. Using Fourier Transform Infrared Spectroscopy the fat, cryoscopy, total solids, defatted dry extract, lactose, protein and casein were analyzed. The hyperbolic tangent transformation function was used with 45 topologies, and the Holdback and K-fold validation methods were tested. In the Holdback method, 75% of the database was employed for training, while 25% was used for validation. In the K-fold method, the database was categorized into five equal sized subsets, which alternated between training and validation. Of the two methods, the K-fold method was proven to have superior efficiency. Next, analysis was done on three models of multilayer perceptron networks with feedforward architecture. In Model 1, the input layer contained all the physicochemical analyses conducted, in model 2 the casein analysis was excluded, and in model 3 the routine analyses performed for dairy products was done (fat, defatted dry extract, cryoscopy and total solids). From Model 3 an ANN was derived which could satisfactorily predict fraud calculated from using the routine and standard analyses for dairy products, containing 64 nodes in the hidden layer, with R2 of 0.9935 and RMSE of 0.5779 for training, and R2 of 0.9964 and RMSE of 0.4358 for validation.


2019 ◽  
Vol 8 (10) ◽  
pp. 1592 ◽  
Author(s):  
Kyoung Hwa Lee ◽  
Jae June Dong ◽  
Su Jin Jeong ◽  
Myeong-Hun Chae ◽  
Byeong Soo Lee ◽  
...  

An adequate model for predicting bacteraemia has not yet been developed. This study aimed to evaluate the performance of an artificial neural network (ANN)-based prediction model in comparison with previous statistical models. The performance of multi-layer perceptron (MLP), a representative ANN model, was verified via comparison with a non-neural network model. A total of 1260 bacteraemia episodes were identified in 13,402 patients. In MLP with 128 hidden layer nodes, the area under the receiver operating characteristic curve (AUC) of the prediction performance was 0.729 (95% confidence interval [CI]; 0.712–0.728), while in MLP with 256 hidden layer nodes, it was 0.727 (95% CI; 0.713–0.727). In a conventional Bayesian statistical method, the AUC was 0.7. The aforementioned two MLP models exhibited the highest sensitivity (0.810). The ranking of clinical variables was used to describe the influential power of the prediction. Serum alkaline phosphatase was one of the most influential clinical variables, and one-out search was the best ranking method for measuring the influence of the clinical variables. Furthermore, adding variables beyond the 10 top-ranking ones did not significantly affect the prediction of bacteraemia. The ANN model is not inferior to conventional statistical approaches. Bacteraemia can be predicted using only the top 10 clinical variables determined by a ranking method, and the model can be used in clinical practice by applying real-time monitoring.


Sign in / Sign up

Export Citation Format

Share Document