Finite element simulation of an auxetic plied yarn structure

2018 ◽  
Vol 89 (16) ◽  
pp. 3394-3400 ◽  
Author(s):  
Jifang Zeng ◽  
Haijian Cao ◽  
Hong Hu

Auxetic plied yarn is a novel type of yarn structure formed with two types of component yarns with different moduli. Although the effect of structural parameters on its negative Poisson's ratio behavior has been investigated by both experimental and geometrical analyses, the influence of material properties, including yarn tensile modulus and friction, has not been studied yet. In this work, these two factors are further investigated via finite element simulation. The finite element model is first created by using the commercial software ANSYS 15.0. Then, the simulation results are compared with the experimental and analytical data. Finally, the effects of the tilt angle of stiff yarn, yarn friction and tensile modulus are discussed. It is expected that the outcomes of this work would be useful to guide the design and fabrication of this type of auxetic yarn structure.

1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


2019 ◽  
Vol 13 (2) ◽  
pp. 181-188
Author(s):  
Meng Liu ◽  
Guohe Li ◽  
Xueli Zhao ◽  
Xiaole Qi ◽  
Shanshan Zhao

Background: Finite element simulation has become an important method for the mechanism research of metal machining in recent years. Objective: To study the cutting mechanism of hardened 45 steel (45HRC), and improve the processing efficiency and quality. Methods: A 3D oblique finite element model of traditional turning of hardened 45 steel based on ABAQUS was established in this paper. The feasibility of the finite element model was verified by experiment, and the influence of cutting parameters on cutting force was predicted by single factor experiment and orthogonal experiment based on simulation. Finally, the empirical formula of cutting force was fitted by MATLAB. Besides, a lot of patents on 3D finite element simulation for metal machining were studied. Results: The results show that the 3D oblique finite element model can predict three direction cutting force, the 3D chip shape, and other variables of metal machining and the prediction errors of three direction cutting force are 5%, 9.02%, and 8.56%. The results of single factor experiment and orthogonal experiment are in good agreement with similar research, which shows that the model can meet the needs for engineering application. Besides, the empirical formula and the prediction results of cutting force are helpful for the parameters optimization and tool design. Conclusion: A 3D oblique finite element model of traditional turning of hardened 45 steel is established, based on ABAQUS, and the validation is carried out by comparing with experiment.


2018 ◽  
Vol 153 ◽  
pp. 06006
Author(s):  
Jiatong Ye ◽  
Hua Huang ◽  
Chenchen He ◽  
Guangyuan Liu

In this paper, a finite element model of membrane air spring in the vehicle is established, and its vertical stiffness characteristics under a certain inflation pressure are analysed. The result of finite element simulation method is compared with the result of the air spring bench test. The accuracy and reliability of the finite element simulation method in nonlinear analysis of air spring system are verified. In addition, according to the finite element method, the influence of the installation of the air spring limit sleeve on its stiffness is verified.


2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Nor Fazli Adull Manan ◽  
Jamaluddin Mahmud ◽  
Aidah Jumahat

This paper for the first time attempts to establish the biomechanical characteristics of bovine skin via experiment-theory integration and finite element simulation. 30 specimens prepared from fresh slaughtered bovine were uniaxially stretched in-vitro using tensile tests machine. The experimental raw data are then input into a Matlab programme, which quantified the hyperelastic parameters based on Ogden constitutive equation. It is found that the Ogden coefficient and exponent for bovine skin are μ = 0.017 MPa and α = 11.049 respectively. For comparison of results, the quantified Ogden parameters are then input into a simple but robust finite element model, which is developed to replicate the experimental setup and simulate the deformation of the bovine skin. Results from experiment-theory integration and finite element simulation are compared. It is found that the stress-stretch curves are close to one another. The results and finding prove that the current study is significant and has contributed to knowledge enhancement about the deformation behaviour of bovine skin.


2012 ◽  
Vol 215-216 ◽  
pp. 1105-1110 ◽  
Author(s):  
Xiong Guo ◽  
Lv Long Zou ◽  
Bing Lu ◽  
Shi Liang Zhang ◽  
Xing Ren Su ◽  
...  

The connection performance of the large taper, multi-thread, variable pitch of screw threaded casing is researched by 3D finite element simulation on ANSYS Workbench. The 3D finite element model is created precisely. The stress distribution on the teeth of three kind variable pitch of screw threaded structure is studied by using the static structure of the contact analysis module. Contrasting stress distribution of the variable pitch of screw with of the equal pitch of screw under the same working condition, it is validated that design principle for the variable pitch of screw connection is correct. The influence of changes in the amount of variable pitch of screw to the whole stress distribution on teeth is discussed. The results show that the force distribution on the teeth of the variable pitch of screw connection is more uniform than equal pitch of screw, and will improve the overall carrying capacity. This study has its practical value to improve the connective performance of the threaded casing and enhance the product quality of threaded casing.


2014 ◽  
Vol 912-914 ◽  
pp. 806-809
Author(s):  
Ming Feng Zheng ◽  
Yue Chen ◽  
Ya Lin Yan

Established a finite element model of the school bus based on the Hyper Mesh, take a finite element simulation about the various parts of the school bus parameters such as stress, displacement and deformation under 5 conditions. Through the analysis of the school bus to identify conditions displacement of stress more concentrated area as well as in operation, by optimizing improve the local structure of these regions,improve the stress concentration and safety.


Author(s):  
Guifeng Wang ◽  
Huiyue Dong ◽  
Yingjie Guo ◽  
Yinglin Ke

Robotic boring is an effective way to implement finish machining of intersection holes. However, to a certain extent, its application is limited due to the low rigidity of the robot, whose stiffness brings on high vibration levels. In this study, a new approach based on an equivalent stiffness is proposed to gain a fundamental understanding for the cutting mechanism and vibration performance of a robotic boring system. In the approach, the robotic boring system in one direction is regarded as a mass–spring–damping unit according to the structure characteristics of the robot. Thus, the whole robotic boring system is equivalent to a mass–spring–damping group in three-dimensional space. The stiffness and natural frequency of the robot system were measured by stiffness identification and a modal test on an ABB IRB 6600-175/2.55 robot. An equivalent three-dimensional finite element model based on this approach was established to simulate the robotic boring process, and a verification experiment was conducted to determine the accuracy of the finite element simulation. The results show that the simulated cutting force components and the amplitude in the feed direction are in good agreement with the experiment under different cutting conditions, and this proposed approach is feasible.


2011 ◽  
Vol 94-96 ◽  
pp. 1818-1823
Author(s):  
Guang Sheng Bian ◽  
Qiang Jia ◽  
An Ying Chen ◽  
Fang Gu

There were four collapse accidents of fastener-style steel tubular formwork support being investigated in the article. The collapse mechanism was researched. According to the collapse accidents, the finite element model was established. The whole stability analysis was done. The analytical results were the same with the conditions of accidents. The collapse mechanism was verified. According to the collapse mechanism, the security technical measures of high formwork support were put forward.


2019 ◽  
Vol 30 (5) ◽  
pp. 764-777 ◽  
Author(s):  
Song-lin Nie ◽  
De-kui Xin ◽  
Hui Ji ◽  
Fang-long Yin

This article presents the design and multi-physics coupling analysis of a shear-valve-mode magnetorheological fluid damper with different piston configurations. The finite element model is built to study the effects of the shape of the piston slot and magnetism-insulators at both ends of the piston yoke on the performance of the magnetorheological damper. Particle swarm optimization and finite element simulation are combined to optimize the structural parameters of the magnetorheological damper. The influences of different piston configurations on the magnetic flux density in the working gap, the shear stress, the viscous stress, and the dynamic range are investigated. The simulation results reveal that the magnetorheological damper, in which the corners of the piston slot are chamfered and the edges of the magnetism-insulators are filleted, exhibits a better damping performance. Furthermore, magnetorheological dampers with and without magnetism-insulators are fabricated. The influences of control current, displacement, and velocity on the mechanical performance of the magnetorheological dampers are experimentally investigated, and the experiment results are in accordance with the theoretical derivation and finite element simulation results.


2020 ◽  
Vol 14 (1) ◽  
pp. 39-55
Author(s):  
Xiaole Qi ◽  
Guohe Li ◽  
Qi Zhang ◽  
Fei Sun

Background:: Particle Reinforced Metal Matrix Composites (PRMMCs) are widely used because of the higher specific strength, better dimensional stability, lower thermal expansion coefficient, better wear and corrosion resistance. However, the existence of reinforcing particles makes it hard to machine. The main manifestations are as follows: severe tool wear, easy generation of debris tumors in processing, and many defects on the machined surface, etc. These seriously limit its wider application. The Finite Element Method (FEM) has been widely applied in the research of PRMMCs machining according to recent patents, which can improve the efficiency and reduce the cost of research. Therefore, it is necessary to carry out a deep research for the processing technology of PRMMCs. Methods:: In this paper, the latest research progress of finite element simulation of cutting PRMMCs was summarized. The key technologies of finite element simulation, including constitutive model, geometric model, friction model between chip and tool, fracture criterion and mesh generation, are comprehensively analyzed and summarized. The application in the specific processing methods was discussed, such as turning, milling, grinding, ultrasonic vibration grinding and drilling. The existing problems and development direction of the simulation of PRMMCs cutting are also given. Besides, a lot of patents on finite element simulation for PRMMCs machining were studied. Results:: Finite element model for the actual composition determines the accuracy of finite element simulation. Through the secondary development of finite element software, a more realistic finite element model of Particle reinforced metal matrix composites can be established. Conclusion:: Finite Element Method (FEM) provides a new approach for the study of mechanism of Particle reinforced metal matrix composites machining. Quantitative analysis and prediction of micro- details in cutting can be realized.


Sign in / Sign up

Export Citation Format

Share Document