A dynamic modeling approach for a high-speed winding system with twin-rotor coupling

2020 ◽  
Vol 90 (21-22) ◽  
pp. 2533-2551
Author(s):  
Xi Hou ◽  
Yongxing Wang ◽  
Pei Feng ◽  
Haiyan Yu ◽  
Xunxun Ma ◽  
...  

This paper continues the previous study and presents a dynamic modeling approach for a high-speed winding system. To meet the requirements of high-speed winding, a twin-rotor coupling structure is adopted in the winding system. It is a complex spindle system, due to its high speed, heavy load, frequency-dependent coupling parameters, and time-varying rotational speed. In this paper, an approach to establishing a finite element model of the winding system is proposed to predict its dynamic behavior characteristics during the winding process. First, the spindle and contact roller models of the discrete single component are developed based on Timoshenko beam theory. Bending, transverse shear effects, and gyroscopic moment are considered in the models. The contact stiffness between the contact roller and the packages to be wound on the spindle is simplified by a nonlinear spring. The contact stiffness is identified by dynamics analysis in ANSYS® 17.0. Next, a fully dynamic model of the winding system, which consists of the spindle subsystem, the contact roller, and the flexible coupling elements, is established. Third, the Newmark method is used to develop the program to solve the dynamic equations in MATLAB® 2013b. Finally, the effects of the supporting system and contact state on the winding system's dynamic response are investigated. The results indicate the model of the winding system presented in this paper is suitable for predicting dynamic performance during the winding process.

2019 ◽  
Vol 90 (7-8) ◽  
pp. 757-775
Author(s):  
Yongxing Wang ◽  
Lijun Zhang ◽  
Xi Hou ◽  
Jiang Yan ◽  
Shujia Li ◽  
...  

A polyester filament winding spindle is the most complex winding rotor system, due to its high speed, heavy load, and frequency-dependent parameters; furthermore, the spindle's rotating speed constantly changes and it is continually crossing the critical speed points. This paper presents an approach to establish the finite element model of the winding spindle to predict its dynamic behavior characteristics during start-up. Firstly, three finite element models of the discrete single component were developed based on the Timoshenko beam theory. The bending, transverse shear effect, and gyroscopic moment were considered in these models. The flexible supporting system, which consists of a deep groove ball bearing and several rubber O-rings, is simplified by a nonlinear spring and damper. Its frequency-dependent dynamic supporting parameters are identified by experiment. Secondly, a fully dynamic model of the polyester winding spindle system, which consists of the cantilever supporting arm, shaft, and sleeve, as well as the flexible and rigid coupling elements, was established. Thirdly, the Newmark method was used to develop a program for solving the dynamic equations of the spindle system in MATLAB®. Based on the model of the spindle system and the computation program, the effects of the supporting stiffness, damping, and start-up time on the spindle's unbalanced response were investigated. The results indicate that the model of the spindle system presented in this paper is suitable for the prediction of the dynamic performance during its start-up.


2015 ◽  
Vol 9 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Ling Liu

In this paper, the CNC machine spindle after remanufacturing is researched as an object on uncertain constraints. At first, the equations of the machine spindle motion based on beam theory are established. This article uses Finite Element Analysis (FEA) function to analyze the remanufacturing of machine spindle system in the free mode and while static and the actual working conditions of multi-modal analysis of the spindle’s constraints state. By analysis it is known that the spindle vibrates and deforms at high speeds, and some assumptions are used to improve the unreasonable parameters, so that the spindle’s dynamic performance is more stable and reliable in the conditions of the high speed and heavy load operation. In addition, simplifying the cost and shortening the design cycle are the part of the analysis. The results provides an optimized design and a basis for precision control for the heavy-duty mechanical spindle system or machine spindle system.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yangshou Xiong ◽  
Kang Huang ◽  
Tao Wang ◽  
Qi Chen ◽  
Rui Xu

The development of technology requires higher load capacity, rotating speed, power-weight ratio, lower vibration, and noise with respect to the gear transmission. The new type microsegment gear’s tooth profile curve is composed of many microsegments. Previous researches indicate that the microsegment gear has a good static performance, while the dynamic behavior of the microsegment gear has never been investigated. This paper will focus on the dynamic performance of the gear. The profile deviation between microsegment gear and involute gear is regarded as a displacement excitation in the proposed dynamic model. The numerical analysis for three cases is conducted and the results shows that, in low-speed and heavy-load, medium-speed and medium-load conditions, microsegment gear and involute gear both exhibit a good performance, while, in high-speed and heavy-load condition, microsegment gear has a better performance than that of involute gear. The influence of backlash on the dynamic performance is also studied. It is found that the variation of backlash does not change the type of motion, but the vibration amplitude and the stability of the motion are much affected. The main idea in this paper is supposed to provide a novel method for the precision grinding of the microsegment gear.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Emre Dikmen ◽  
Peter J. M. van der Hoogt ◽  
André de Boer ◽  
Ronald G. K. M. Aarts ◽  
Ben Jonker

In this study, a modeling approach is developed to examine laminar flow effects on the rotordynamic behavior of high-speed mini rotating machinery with a moderate flow confinement. The existing research work mostly focuses on the flow-induced forces in small gap systems, such as bearings and seals, in which the flow is mostly laminar and inertia effects are ignored. In other studies, medium gap systems are analyzed, taking the inertia effects into consideration, but the surrounding flow is considered as turbulent. However, in high speed mini rotating machinery, the large clearances and the high speeds make the inertia effects significant, even in the laminar flow regime. In the current study, the flow-induced forces resulting from the surrounding fluid are analyzed and these models are combined with the structural finite element (FE) models for determining the rotordynamic behavior. The structure is analyzed with finite elements based on Timoshenko beam theory. Flow-induced forces, which include inertia effects, are implemented into the structure as added mass-stiffness-damping at each node in the fluid confinement. The shear stress is modeled with empirical and analytical friction coefficients, and the stability, critical speeds, and vibration response of the rotor is investigated for different friction models. In order to validate the developed modeling approach, experiments were conducted on a specially designed setup at different support properties. By comparing the experiments with the theoretical models, the applicability of the different friction models are examined. It was found that the dynamic behavior is estimated better with empirical friction models compared to using the analytical friction models.


2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Peixiang Xu

The thermal balance state of high-speed and heavy-load gear transmission system has an important influence on the performance and failure of gear transmission and the design of gear lubrication system. Excessive surface temperature of gear teeth is the main cause of gluing failure of gear contact surface. To investigate the gear heat distribution in meshing process and discuss the effect of thermal conduction on heat distribution,a finite element model of spur gear is presented in the paper which can represent general involute spur gears. And a simulation approach is use to calculate gear heat distribution in meshing process. By comparing with theoretical calculation, the correctness of the simulation method is verified, and the heat distribution of spur gear under the condition of heat conduction is further analyzed. The difference between the calculation results with heat conduction and without heat conduction is compared. The research has certain reference significance for dry gear hobbing and the same type of thermal-structural coupling analysis.


2011 ◽  
Vol 199-200 ◽  
pp. 707-714
Author(s):  
Fu Ji Wang ◽  
Jian Wei Ma ◽  
Zhen Yuan Jia ◽  
Jiang Yuan Yang ◽  
Di Song

The contact between balls and screw races or nut races is a kind of typical non-conformal contact. The study of contact characteristics of ball screw will provide theoretical bases for improving transmission efficiency and working properties of ball screw. In this study, hertz contact theory was adopted to construct the solution formula of ball screw’s contact stiffness, ball screw’s contact characteristics in terms of axial load, design parameters and material properties was analyzed, and the contact deformation value of the contact between ball and screw races was got using finite element simulation method. The simulation result is close to the theoretic value, which proves the correctness of the theory analysis. The present study offers theoretical support for the design and application of high speed, heavy load and precision ball screws.


2010 ◽  
Vol 431-432 ◽  
pp. 142-145
Author(s):  
Song Zhang ◽  
Xing Ai

In the present paper, a dynamic modeling approach is presented to determine the contact stiffness and structural damping between the spindle and the toolholder; and then, the spindle and the toolholder are coupled by some springs and dampers. Finally, the dynamic performances of the HSK-A63 spindle/toolholder interface are analyzed by means of finite element method (FEM). From the simulated results, it can be seen that the natural frequencies of the first two modes increase with the increase of the rotational speed, which make the HSK spindle/toolholder interface appear good dynamic performances and be suitable for high-speed machining.


2013 ◽  
Vol 437 ◽  
pp. 8-12
Author(s):  
Yao Yang ◽  
Jun Tang Yuan ◽  
Zhen Hua Wang ◽  
Biao Yang

The method for dynamic modeling of joint surfaces is proposed to predict dynamic performance of machine tool accurately by virtual material layer elements in this paper. For this process, the numerical relations of contact stiffness and virtual material layer parameters are obtained by finite element theory, and the finite element model is founded by virtual material layer elements and multiple point constrain technique (MPC). Modal analysis of a simple model under different contact stiffness is carried out. It has shown the relative errors between theoretical natural frequencies and simulated ones of this model are less than 2%.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Ying He ◽  
Jiangping Mei ◽  
Jiawei Zang ◽  
Shenglong Xie ◽  
Fan Zhang

End effector mounting bracket is an important load bearing part of high speed and heavy load palletizing robot, which is located at the most distant point in robot rotation radius and frequently works in complex conditions such as start-stop, switch direction, and acceleration and deceleration motion; therefore, optimizing design for its structure is beneficial to improve the dynamic performance of robotic system and reduce energy consumption. Firstly, finite element model of end effector mounting bracket was established, and its accuracy was verified by contrastive analysis of modal test result and finite element model. Secondly, through modal analysis, vibration response test, frequency response analysis, and the static analysis, taking inertia into account, the mass is minimized, the maximal stress is minimized, the maximal deformation is minimized, and the first natural frequency is maximized as the optimization objectives are determined; the design variables were selected by sensitivity analysis, taking their value range as the constraint conditions; approximation models of objective functions were established by the Box-Behnken design and the response surface methodology, and their reliability was validated; to determine weighting factor of each optimization objective, an analytic hierarchy process based on finite element analysis (FEA + AHP) method was put forward to improve the objectivity of comparison matrix; subsequently, the multicriteria optimization mathematical model was established by the methods mentioned above. Thirdly, the multicriteria optimization problem was solved by the NSGA-II algorithms and optimization results were obtained. Finally, the contrastive analysis results between optimized model and initial model showed that, in the case of the maximum stress and deformation within allowable values range, the mass reduction was 17.8%; meanwhile, the first natural frequency was increased, and vibration response characteristics of the entire structure were improved significantly. The validity of this optimization design method was verified.


Sign in / Sign up

Export Citation Format

Share Document