Prediction and optimization of process parameters of electrospun polyacrylonitrile based on numerical simulation and response surface method

2021 ◽  
pp. 004051752110039
Author(s):  
Peng Chen ◽  
Qihong Zhou ◽  
Ge Chen ◽  
Qian Zhang ◽  
Shaozong Wang

There is a strong coupling relationship between the process parameters of electrospun polyacrylonitrile (PAN) and its fiber diameter. By examining the mechanism of influence, the quality of electrospun products can be significantly improved and controlled. In this study, a novel idea for predicting and optimizing electrospun PAN process parameters was proposed. First, the control equation of the electrospun PAN was established based on the incompressible Navier–Stokes equation, and the volume force (generated via electric field force, gravity, and surface tension) and jet velocity during electrospinning were solved and analyzed via simulation software. Then, grey correlation analysis was used to calculate the correlation among the three process parameters (applied voltage, feed rate, and distance between the needle and collector) of the electrospun PAN, volume force, jet velocity, and average fiber diameter. Subsequently, the effect of simultaneous changes in multiple process parameters on the average fiber diameter was examined based on the response surface method, and a prediction model was established. Finally, the experimental results indicated that the model can predict the average fiber diameter when multiple process parameters are simultaneously changed. The model predicted the average fiber diameter with an error of only 0.28%, and the optimized minimum fiber average diameter was 235.3 nm (the applied voltage was 12 kV, the distance between the needle and collector was 15.6 cm, the feed rate was 0.37 mL/h). This study provides a theoretical basis for the on-line monitoring of the electrospun PAN.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4879
Author(s):  
Mireia Vilanova ◽  
Rubén Escribano-García ◽  
Teresa Guraya ◽  
Maria San Sebastian

A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.


2019 ◽  
Vol 13 (2) ◽  
pp. 4911-4927
Author(s):  
Swagatika Mohanty ◽  
Srinivasa Prakash Regalla ◽  
Yendluri Venkata Daseswara Rao

Product quality and production time are critical constraints in sheet metal forming. These are normally measured in terms of surface roughness and forming time, respectively. Incremental sheet metal forming is considered as most suitable for small batch production specifically because it is a die-less manufacturing process and needs only a simple generic fixture. The surface roughness and forming time depend on several process parameters, among which the wall angle, step depth, feed rate, sheet thickness, and spindle speed have a greater impact on forming time and surface roughness. In the present work, the effect of step depth, feed rate and wall angle on the surface roughness and forming time have been investigated for constant 1.2 mm thick Al-1100 sheet and at a constant spindle speed of 1300 rpm. Since the variable effects of these parameters necessitate multi-objective optimization, the Taguchi L9 orthogonal array has been used to plan the experiments and the significance of parameters and their interactions have been determined using analysis of variance (ANOVA) technique. The optimum response has been brought out using response surfaces. Finally, the findings of response surface method have been validated by conducting additional experiments at the intermediate values of the parameters and these results were found to be in agreement with the predictions of Taguchi method and response surface method.


2018 ◽  
Vol 29 (9) ◽  
pp. 2129-2139 ◽  
Author(s):  
Srdjan Petrović ◽  
Ljiljana Rožić ◽  
Vesna Jović ◽  
Stevan Stojadinović ◽  
Boško Grbić ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3454-3468
Author(s):  
Xianglan Ming ◽  
Qichao Li ◽  
Jinlong Feng ◽  
Wei Jiang

To improve the utilization rate of pineapple leaf and crop straw, and provide technical support for making biodegradable fiber mulch paper through organic cultivation, the process and properties of the degradable fiber mulch paper made from pineapple leaf and rice straw were studied. The degradable fiber mulch paper was prepared as a hybrid composite in which pineapple leaf fiber and rice straw fiber were used as raw materials, and environmentally friendly agents were added. A four-factor five-level quadratic orthogonal rotation central composite design of the response surface method was employed. The beating degree of pineapple leaf fiber, basis weight, addition ratio of pineapple leaf fiber, and wet strength agent content were process parameters; dry tension strength, wet tension strength, and bursting strength were objective functions. The optimal technology parameters of pineapple leaf and rice straw fiber mulch paper were 70 to 90 g/m2 basis weight of pineapple leaf fiber, 17% to 25% addition ratio of pineapple leaf fiber, 55 °SR beating degree, and 1.5% wet strength agent content. According to the tensile strength and bursting strength standards, the degradable fiber mulch paper made from pineapple leaf and rice straw was feasible. The results provide theoretical basis and technical support to use pineapple leaves and rice straw to make degradable mulch paper.


Sign in / Sign up

Export Citation Format

Share Document