Air and Ring Combination in Tandem Spinning

1997 ◽  
Vol 67 (3) ◽  
pp. 217-223 ◽  
Author(s):  
A. P. S. Sawhney ◽  
L. B. Kimmel

With the objective of boosting ring spinning productivity, a new tandem spinning system combining air-jet and ring spinning technologies in continuous tandem is investigated. In this “air-plus-ring” tandem spinning system, a drafted roving strand as it emerges from the front roller nip feeds into a single- or dual-jet air nozzle where it is subjected to a vortex of compressed air, producing a pneumatically entangled, false-twisted, partially strengthened strand. This so-called prefabricated, air-bolstered strand continuously feeds into a standard ring spinning zone and is ultimately spun into a novel, single-component yarn. By spinning a few cotton and cotton-blend yarns with the lowest practical twist levels possible on both the tandem and conventional ring spinning systems, we show that a tandem spun yarn can be produced with a relatively lower (true ring) twist level than a pure ring spun yarn. To an extent, the tandem spinning's air-bolstering action reinforces the drafted fibrous strand, contributing to yarn formation and hence character. Since ring spinning productivity is inversely proportional to yarn twist level, the relatively lower twist level required in tandem spinning allows a proportionately higher yarn production speed (in some cases, up to 50% faster than the conventional ring spinning), while maintaining spindle speed at the traditional, optimum level imposed by the limiting traveler speed. Tandem spun yarns, however, are somewhat different from, and generally weaker than, conventional ring spun yarns. This paper briefly describes a prototype of the new tandem spinning system developed on a laboratory Spintester, and shows spinning parameters and properties of a few yarns produced on both the tandem arid conventional ring spinning systems, each employing the traditional (maximum) optimum spindle speed of 10,000 rpm for a given 5.0 cm (2 inch) diameter ring.

Fibers ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 59
Author(s):  
Dunja Šajn Gorjanc ◽  
Neža Sukič

The aim of this research was to determine the optimum twist equation for ring-spun yarns. The yarn twist can be calculated by different equations. With the research, we tried to find the appropriate equation to determine the yarn twist, which is determined by the values of yarn strength and hairiness. In the research, yarns from long staple combed cotton rovings and of different fineness (10 tex, 11.8 tex, 20 tex and 29.4 tex) were analyzed. The yarn twist was calculated using the equations of Koechlin and Laetsch. The analyzed yarns were produced in the spinning mill on the laboratory ring spinning machine Spinntester. In the second part of the investigation, yarn strength and hairiness were analyzed as a function of yarn twist. The results showed that Laetsch’s equation is suitable for determining the twist for yarns with a fineness of 10 tex, 11.8 tex, 20 tex and 29.4 tex, since, in this case, the calculated number of yarn threads is higher and thus the strength and elongation at break are also higher. The yarn hairiness is higher in analyzed samples for yarns with the twist calculated according to the Koechlin’s equation.


2016 ◽  
Vol 11 (3) ◽  
pp. 155892501601100 ◽  
Author(s):  
Esin Sarioğlu ◽  
Osman Babaarslan

In the textile industry, composite yarns with multifilament cores are used to impart strength. There are various spinning systems to produce composite core-spun yarns. In this study, to determine the effects of filament fineness on yarn characteristics of composite yarns, polyester filaments with medium, fine and micro fiber linear densities were used as the core portion and cotton fiber was used as the sheath material. Yarn samples were manufactured using a modified ring spinning system with four different yarn counts and constant twist factor (ae). The effect of filament linear density on yarn tensile properties, unevenness and imperfections was determined. Yarn evenness and tensile properties were compared with 100% cotton ring spun yarn and to each other. When relative amount of core increases, it was observed that composite yarns had improved tenacity and elongation compared to 100% cotton ring spun yarn. Although filament fineness was found to have a significant effect on the CVm % properties, there was no statistical effect on imperfections other than yarn count parameter.


2021 ◽  
Author(s):  
Muhammad Ali Zeeshan ◽  
Zamir Ahmed Abro ◽  
Abdul Malik Rehan ◽  
Ahmer Hussain Shah ◽  
Nazakat Ali Khoso ◽  
...  

Abstract Cotton is the most commonly used natural fiber and has a significant contribution to the production of yarn manufacturing. This yarn is subsequently utilized for the production of fabrics, garments, and other textile products. The quality of the end product depends on the selection of an appropriate spinning process and output parameters. Numerous methods and processes are involved in the production of yarn. Ring spinning machine is most commonly used for the production of cotton spun yarn. It is necessary to optimize the process parameters of ring-spun yarn without compromising on quality and production. In this research work; these parameters have been optimized by applying the multiple linear regression analysis. The process parameters (especially spindle speed, twist and yarn diameter) and their effect on yarn quality have been discussed in detail. Total 135 ring-spun yarn samples have been produced under three different levels of spindle speed, twist, and linear density. These yarn samples are categorized as 8 Ne, 16 Ne, and 24 Ne at three different Twist multipliers (3.8, 4.0, and 4.2) and different revolutions per minute of the spindle (9500 rpm, 10500rpm, and 11500 rpm). The models have been designed to predict the quality of ring-spun by utilizing USTER evenness tester data. The Count of yarn, yarn twist, and spindle speed were selected as a predictor. The multiple regression method has been used to find out the relation between the process parameters and yarn quality characteristics. The high values of R2 (the coefficient of determination) showed the relationships in the prediction model.


1997 ◽  
Vol 67 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Xungai Wang ◽  
Menghe Miao ◽  
Yanlai How

This paper introduces the concept of JetRing spinning, a new spinning technique that incorporates features of both ring and air-jet spinning systems. In JetRing spinning, a single air jet is used below the yarn-forming zone of a conventional ring spinning system; this jet acts in a way similar to the first jet in air-jet spinning. The swirling air currents in the jet wind the protruding fibers around the yarn body, thus reducing yarn hairiness. The air pressure applied to the jet in this study is 0.5 bar, which is much lower than the air pressure used in air-jet spinning. To evaluate the performance of JetRing spinning, ring spun and JetRing spun worsted yarns of 56 tex are tested for hairiness, tensile properties, and yarn evenness. The hairiness results from the Zweigle hairiness meter show that the JetRing spun yarn has much lower numbers of hairs than the ring spun yarn in almost all the hair length groups. The total number of hairs exceeding 3 mm ( i.e., the S3 value) for the JetRing spun yarn is nearly 40% less than that of the ring spun yarn, while both yarn types show little difference in evenness and tensile properties.


2020 ◽  
Vol 68 (4) ◽  
pp. 22-29
Author(s):  
Beti Rogina-Car ◽  
Zenun Skenderi ◽  
Zlatko Vrljičak

Men’s socks were designed and manufactured in multiple plated single jersey structure using 20 tex viscose and Tencel yarn, 156 and 220 dtex multifilament PA 6.6 yarn and 25 tex cotton yarn. Sock mass and sock thickness were determined, the height of the sock leg, the length of the sock foot and half of the leg circumference and half of the foot circumference were measured. Thermophysiological sock wear comfort was determined by measuring thermal resistance on the thermal foot manikin. The results revealed that the sock samples containing the ring spun yarn in the structure had higher thermal resistance than the socks containing rotor and air-jet spun yarns. The obtained difference of thermal resistance of the sock samples per type of the basic yarn was significant. The viscose socks made of ring spun yarns with an added coarser cotton yarn and PA 6.6 yarn had the highest thermal resistance, while the lowest thermal resistance was recorded for the Tencel rotor spun yarns


2021 ◽  
Vol 16 ◽  
pp. 155892502110065
Author(s):  
Peng Cui ◽  
Yuan Xue ◽  
Yuexing Liu ◽  
Xianqiang Sun

Yarn-dyed textiles complement digital printing textiles, which hold promise for high production and environmentally friendly energy efficiencies. However, the complicated structures of color-blended yarns lead to unpredictable colors in textile products and become a roadblock to developing nonpollution textile products. In the present work, we propose a framework of intelligent manufacturing of color blended yarn by combining the color prediction algorithm with a self-developed computer numerically controlled (CNC) ring spinning system. The S-N model is used for the prediction of the color blending effect of the ring-spun yarn. The optimized blending ratios of ring-spun yarn are obtained based on the proposed linear model of parameter W. Subsequently, the CNC ring-spinning frame is used to manufacture color-blended yarns, which can configure the constituent fibers in such a way that different sections of yarn exhibit different colors.


2019 ◽  
Vol 19 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Yuzheng Lu ◽  
Yang Wang ◽  
Weidong Gao

Abstract In this study, the wicking properties of ring and compact-siro ring spun staple yarns were compared. The twist level, which is related to the structure of the staple yarns, was found to significantly influence the wicking property of the two kinds of yarn. Polyester staple fibers with 1.33 dtex × 38 mm were selected as the staple fiber material, and the effect of the twist level on the wicking property was investigated using the capillary rise method. The results show that with a decreasing twist coefficient, the wicking height increases with a decrease in yarn compactness. The compact-siro spun yarn showed better wicking properties owing to it special ply yarn structure. Furthermore, the tension property of the yarns decreased significantly with a decrease in the twist coefficient. Compact-siro spinning was carried out to obtain staple yarns with lower twist coefficients, and the yarns showed great improvement in terms of yarn strength, fiber straightness, and wicking properties. Thus, compact-siro spinning is an efficient method to improve the wicking properties of staple yarns.


2019 ◽  
Vol 89 (21-22) ◽  
pp. 4438-4451 ◽  
Author(s):  
Peiying Li ◽  
Mingrui Guo ◽  
Fengxin Sun ◽  
Weidong Gao

An agent-aided system (AAS) for improving comprehensive properties of ring spun yarns with the aid of viscosity and surface tension of the agent is reported in this paper. The mechanism of the humidification and friction process of the AAS was investigated, and related experiments were also carried out to verify the mechanism of analysis. The results confirm that the AAS can attach the fiber ends protruding out of a yarn body on the yarn surface and assist in twisting the fiber ends back into the interior of the yarn body, resulting in a significant reduction of the modified ring spun yarn hairiness. Moreover, the yarn hairiness is prominently reduced after the winding process. The experimental results also show that a speed ratio of 1.3 between the rotating speed of the cylinder and the output speed of the yarn leads to the greatest extent of harmful hairiness reduction (34%), which also corresponds to optimal modified yarn tenacity. Meanwhile, the modified ring spun yarns show a tight and smooth appearance, and the yarn evenness has no deterioration. In addition, the AAS is applicable to both cotton and viscose yarns with different yarn counts. Therefore, the AAS can potentially be used to reduce yarn hairiness for ring spun yarns and enhance the quality of ring spun yarns in the textile industry.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
Biswa Ranjan Das ◽  
S. M. Ishtiaque ◽  
R. S. Rengasamy

This article reports on the analysis of the fiber overlap and fiber extent in ring, rotor, and air-jet spun polyester/viscose blended yarns. The fiber overlap and fiber extent was measured by employing the tracer fiber technique. Statistical analysis was carried out at the 95% significance level with the single tail test to trace out specific trends executed by the spun yarns with any change in their blend proportions. The fiber overlap index and spinning-in-coefficient is correlated with tensile characteristics (static and dynamic) of the spun yarns to explore the most influential structural parameter among them for different applications. This presents study indicates that the prediction of spun yarn performance in post spinning processes is more appropriately modeled based on fiber overlap index over spinning-in-coefficient for ring and air-jet spun yarns, whereas spinning-in-coefficient is more appropriate for rotor spun yarns. For apparel use, spinning-in-coefficient is more appropriate over fiber overlap index for rotor and air-jet yarns to model the spun yarn strength as opposed to fiber overlap index for ring spun yarns.


2021 ◽  
Author(s):  
özgü özen ◽  
demet Yılmaz ◽  
Kerim Yapıcı

Abstract To take the advantages of spun yarns such as porosity, softness, bending as well as usability as yarn/fabric forms, in this study, it was worked on an alternative conductive yarn production method. Different from other methods such as coating, core-spun, blending, a conductive nanosuspension was applied to viscose, cotton and polyester open fibre bundles with different feeding amounts during the ring spinning with a specially developed apparatus. Reduced graphene oxide (rGO) was used to impart conductivity. Different from literature, rGO was synthesized with a single step process instead of two-step processes to ensure simple, easy-to-apply process and industrial applicability. Following to yarn production, winding, knitting and washing processes were realized to evaluate the changes in yarn conductivity and the usability of the yarns in the post-spinning processes. In addition to tensile properties of the yarns and air permeability of the fabrics, electrical resistance and environmental impact of the method was compared with immersion&drying process. The results indicated that alternative method allows the production of conductive (lower resistance than 100 kΩ) but also stronger, flexible, washable and breathable electronic textile products with an environmentally friendly process. There has been no effort, as yet, to get conductivity in this manner. Therefore, the developed method can be considered to be a new application in the functional yarn production field. The produced conductive yarns can be converted into fabric form by weaving, knitting and embroidery. Therefore, they can also be seen as an ideal as the platforms for future wearable electronics.


Sign in / Sign up

Export Citation Format

Share Document