scholarly journals A Novel Method For The Fibre-Based Conductive Ring Spun Yarn Production

Author(s):  
özgü özen ◽  
demet Yılmaz ◽  
Kerim Yapıcı

Abstract To take the advantages of spun yarns such as porosity, softness, bending as well as usability as yarn/fabric forms, in this study, it was worked on an alternative conductive yarn production method. Different from other methods such as coating, core-spun, blending, a conductive nanosuspension was applied to viscose, cotton and polyester open fibre bundles with different feeding amounts during the ring spinning with a specially developed apparatus. Reduced graphene oxide (rGO) was used to impart conductivity. Different from literature, rGO was synthesized with a single step process instead of two-step processes to ensure simple, easy-to-apply process and industrial applicability. Following to yarn production, winding, knitting and washing processes were realized to evaluate the changes in yarn conductivity and the usability of the yarns in the post-spinning processes. In addition to tensile properties of the yarns and air permeability of the fabrics, electrical resistance and environmental impact of the method was compared with immersion&drying process. The results indicated that alternative method allows the production of conductive (lower resistance than 100 kΩ) but also stronger, flexible, washable and breathable electronic textile products with an environmentally friendly process. There has been no effort, as yet, to get conductivity in this manner. Therefore, the developed method can be considered to be a new application in the functional yarn production field. The produced conductive yarns can be converted into fabric form by weaving, knitting and embroidery. Therefore, they can also be seen as an ideal as the platforms for future wearable electronics.

2018 ◽  
Vol 48 (9) ◽  
pp. 1462-1488 ◽  
Author(s):  
Nazife Korkmaz Memiş ◽  
Gizem Kayabaşı ◽  
Demet Yılmaz

In this study, an innovative method consisting of electrospinning and conventional textile production techniques was built up to produce hybrid yarns enabling the production of functional textile products. The principle of the developed method is to open the twist of spun yarn, make this fibre bundle conductive for use as a collector, collect the electrospun nanofibres onto the conductive opened fibre bundle and finally twist this structure to produce hybrid yarn. To determine the feasibility of the developed method, surface morphology, chemical composition, coating features and tensile properties of the hybrid yarns were compared with that of the pure yarn and nanofibre-coated yarns produced without untwisting and retwisting processes. Test results demonstrated that untwisting process in hybrid production method provided the application of nanofibres interior structure of the spun yarn while retwisting process made integration of classical textile fibres and nanofibres together and hence locking the obtained yarn structure effectively. Thanks to the integrated structure, it was successful to get the yarn have the required tensile properties for weaving, knitting and other processes. Three minutes was determined as the optimum coating time for the effective nanofibre deposition and tensile properties. Summing up the results, it was believed that the method helps to benefit from the special properties of nanofibres for the functional yarn production together with durability and higher tensile properties of the spun yarns for larger usage areas. The presented findings could encourage the researchers to commercialize the method in order to get nanofibre-coated functional yarns.


2016 ◽  
Vol 11 (3) ◽  
pp. 155892501601100 ◽  
Author(s):  
Esin Sarioğlu ◽  
Osman Babaarslan

In the textile industry, composite yarns with multifilament cores are used to impart strength. There are various spinning systems to produce composite core-spun yarns. In this study, to determine the effects of filament fineness on yarn characteristics of composite yarns, polyester filaments with medium, fine and micro fiber linear densities were used as the core portion and cotton fiber was used as the sheath material. Yarn samples were manufactured using a modified ring spinning system with four different yarn counts and constant twist factor (ae). The effect of filament linear density on yarn tensile properties, unevenness and imperfections was determined. Yarn evenness and tensile properties were compared with 100% cotton ring spun yarn and to each other. When relative amount of core increases, it was observed that composite yarns had improved tenacity and elongation compared to 100% cotton ring spun yarn. Although filament fineness was found to have a significant effect on the CVm % properties, there was no statistical effect on imperfections other than yarn count parameter.


2019 ◽  
Vol 89 (21-22) ◽  
pp. 4438-4451 ◽  
Author(s):  
Peiying Li ◽  
Mingrui Guo ◽  
Fengxin Sun ◽  
Weidong Gao

An agent-aided system (AAS) for improving comprehensive properties of ring spun yarns with the aid of viscosity and surface tension of the agent is reported in this paper. The mechanism of the humidification and friction process of the AAS was investigated, and related experiments were also carried out to verify the mechanism of analysis. The results confirm that the AAS can attach the fiber ends protruding out of a yarn body on the yarn surface and assist in twisting the fiber ends back into the interior of the yarn body, resulting in a significant reduction of the modified ring spun yarn hairiness. Moreover, the yarn hairiness is prominently reduced after the winding process. The experimental results also show that a speed ratio of 1.3 between the rotating speed of the cylinder and the output speed of the yarn leads to the greatest extent of harmful hairiness reduction (34%), which also corresponds to optimal modified yarn tenacity. Meanwhile, the modified ring spun yarns show a tight and smooth appearance, and the yarn evenness has no deterioration. In addition, the AAS is applicable to both cotton and viscose yarns with different yarn counts. Therefore, the AAS can potentially be used to reduce yarn hairiness for ring spun yarns and enhance the quality of ring spun yarns in the textile industry.


1997 ◽  
Vol 67 (3) ◽  
pp. 217-223 ◽  
Author(s):  
A. P. S. Sawhney ◽  
L. B. Kimmel

With the objective of boosting ring spinning productivity, a new tandem spinning system combining air-jet and ring spinning technologies in continuous tandem is investigated. In this “air-plus-ring” tandem spinning system, a drafted roving strand as it emerges from the front roller nip feeds into a single- or dual-jet air nozzle where it is subjected to a vortex of compressed air, producing a pneumatically entangled, false-twisted, partially strengthened strand. This so-called prefabricated, air-bolstered strand continuously feeds into a standard ring spinning zone and is ultimately spun into a novel, single-component yarn. By spinning a few cotton and cotton-blend yarns with the lowest practical twist levels possible on both the tandem and conventional ring spinning systems, we show that a tandem spun yarn can be produced with a relatively lower (true ring) twist level than a pure ring spun yarn. To an extent, the tandem spinning's air-bolstering action reinforces the drafted fibrous strand, contributing to yarn formation and hence character. Since ring spinning productivity is inversely proportional to yarn twist level, the relatively lower twist level required in tandem spinning allows a proportionately higher yarn production speed (in some cases, up to 50% faster than the conventional ring spinning), while maintaining spindle speed at the traditional, optimum level imposed by the limiting traveler speed. Tandem spun yarns, however, are somewhat different from, and generally weaker than, conventional ring spun yarns. This paper briefly describes a prototype of the new tandem spinning system developed on a laboratory Spintester, and shows spinning parameters and properties of a few yarns produced on both the tandem arid conventional ring spinning systems, each employing the traditional (maximum) optimum spindle speed of 10,000 rpm for a given 5.0 cm (2 inch) diameter ring.


2012 ◽  
Vol 535-537 ◽  
pp. 1425-1428
Author(s):  
Qin Ma ◽  
Xue Feng Liu

The characteristics of the compact spun yarn were introduced, and the problems in the sizing process of compact spun yarns were analyzed. Because of the high size loading of the compact spun yarn, a large number of yarns break and the chubbiness of the fabric were affected. Aiming at the problems above, through sizing experiment and testing of the performance of the yarns, the differences between the compact spun yarn and the conventional ring spun yarn were analyzed. Comparing with the conventional ring spun yarn, the size loading rate of the compact spun yarn was reduced about 1 to 3.5 percentage points under the same equipment conditions and sizing techniques. To obtain the same strength and hairiness sticking effect, the size loading of the compact spun yarn can be 5 to 6 percentage points lower than that of the conventional ring spun yarn. Sizing materials can be saved, and the cost of the sizing process could reduced by 50%.


2017 ◽  
Vol 25 (0) ◽  
pp. 48-52 ◽  
Author(s):  
Thilak Vadicherla ◽  
Dhandapani Saravanan

This study investigates the effect of the blend ratio on recycled blended yarn quality characteristics. Ring-spun yarns of linear density of 23.6, 29.5 and 39.4 tex were produced from five blend proportions of recycled polyester and cotton (0:100, 33:67, 50:50, 67:33 and 100:0). Increasing the recycled polyester content increases the tenacity, elongation at break and hairiness and decreases unevenness, thin places, thick places and neps, while a decrease in linear density increases the tenacity, elongation at break, unevenness, thin places, thick places, neps and hairiness. Statistical analysis reflects that both the blend ratio and linear density have a significant difference on the tenacity, elongation at break, thin places, thick places, neps and hairiness. However, with reference to unevenness, a significant difference is reported only for linear density and not for the blend ratio. The ratio of recycled polyester has a significant influence on the overall quality of recycled polyester/cotton blended yarn. The blending of recycled polyester and cotton can be optimised to meet various end-use requirements.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biruk Fentahun Adamu ◽  
Desalegn Atalie ◽  
Erkihun Zelalem Liyew

Yarn quality influences both fabric production processes efficiency and export market. One method used to gauge competitiveness of an industry is to study its product quality. The aim of this research work is to evaluate the quality of Ethiopian textile spinning mills’ 100% cotton carded ring spun yarns in terms of its evenness (coefficient of mass variation, CVm), imperfections (thick and thin places, neps), and tensile properties with USTER Statistics 2018. Five spinning mills (B3, A0, A2, A4, and K3) of 15N, 20Ne, 25Ne, 30Ne, 35Ne, and 40Ne nominal yarn counts have been selected for the study. The yarn evenness and imperfections were measured using USTER tester 5 and tensile using a STATIMAT tester. The USTER statistical results showed 20.3Ne (mill B3), 32Ne (mill A4), and 36.2Ne (mill A2) had better overall quality, respectively. It was observed that most selected spinning mills had low evenness, imperfections, yarn strength, and good yarn elongation. Tensile properties of A2 (32.85Ne and 36.2Ne) had fallen under 5% USTER statistics percentile which indicates excellent yarn strength. Generally, from studied mills, it was seen that 61.5% of cotton yarn CVm and thin places falls at above 95% and 15% of yarn tenacity falls at ≤5% of Uster statistical percentile.


2016 ◽  
Vol 88 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Ying Guo ◽  
Xiaoming Tao

Fiber packing density in the yarn cross-section is one of the major parameters that reflect the yarn internal structure and its final properties. Taking the novel low torque ring spun yarn as the object, this work studied the fiber packing density of low torque ring spun yarns and conventional ring spun yarns under various axial tensions. With the increase of tension, the change of fiber packing state in low torque ring spun yarns and conventional ring spun yarns was compared qualitatively. In this study, fiber distribution in the cross-section of both Tencel yarns and wool yarns was carried out. The results show that, under the same axial tension, the packing density of fibers of low torque ring spun yarn is much higher than that of conventional ring spun yarn. The axial tension has greater influence on the fiber packing density for the conventional ring spun yarn. From the experimental results, in low torque Tencel yarn, the fiber packing density nearly reaches 0.9, which is the maximum value for close-packed yarn. Due to different fiber properties and yarn structure, it is difficult to form a close packing for fibers in low torque ring wool yarns. The current results indicate that low torque ring spun yarn has a more compact structure than conventional ring spun yarn. Compared with conventional ring spun yarns with the same count and twist levels, in low torque ring spun yarns, more fibers contribute to the yarn breaking strength.


Fibers ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 59
Author(s):  
Dunja Šajn Gorjanc ◽  
Neža Sukič

The aim of this research was to determine the optimum twist equation for ring-spun yarns. The yarn twist can be calculated by different equations. With the research, we tried to find the appropriate equation to determine the yarn twist, which is determined by the values of yarn strength and hairiness. In the research, yarns from long staple combed cotton rovings and of different fineness (10 tex, 11.8 tex, 20 tex and 29.4 tex) were analyzed. The yarn twist was calculated using the equations of Koechlin and Laetsch. The analyzed yarns were produced in the spinning mill on the laboratory ring spinning machine Spinntester. In the second part of the investigation, yarn strength and hairiness were analyzed as a function of yarn twist. The results showed that Laetsch’s equation is suitable for determining the twist for yarns with a fineness of 10 tex, 11.8 tex, 20 tex and 29.4 tex, since, in this case, the calculated number of yarn threads is higher and thus the strength and elongation at break are also higher. The yarn hairiness is higher in analyzed samples for yarns with the twist calculated according to the Koechlin’s equation.


2020 ◽  
Vol 68 (4) ◽  
pp. 22-29
Author(s):  
Beti Rogina-Car ◽  
Zenun Skenderi ◽  
Zlatko Vrljičak

Men’s socks were designed and manufactured in multiple plated single jersey structure using 20 tex viscose and Tencel yarn, 156 and 220 dtex multifilament PA 6.6 yarn and 25 tex cotton yarn. Sock mass and sock thickness were determined, the height of the sock leg, the length of the sock foot and half of the leg circumference and half of the foot circumference were measured. Thermophysiological sock wear comfort was determined by measuring thermal resistance on the thermal foot manikin. The results revealed that the sock samples containing the ring spun yarn in the structure had higher thermal resistance than the socks containing rotor and air-jet spun yarns. The obtained difference of thermal resistance of the sock samples per type of the basic yarn was significant. The viscose socks made of ring spun yarns with an added coarser cotton yarn and PA 6.6 yarn had the highest thermal resistance, while the lowest thermal resistance was recorded for the Tencel rotor spun yarns


Sign in / Sign up

Export Citation Format

Share Document