A Comparative Study of the Tensile Fatigue Behavior of Cotton—Polyester Blended Yarn by Cyclic Loading

2007 ◽  
Vol 39 (2) ◽  
pp. 165-179 ◽  
Author(s):  
Ali A.A. Jeddi ◽  
H. Nosraty ◽  
M.R. Taheri otaghsara ◽  
M. Karimi
2019 ◽  
Vol 9 (10) ◽  
pp. 1980 ◽  
Author(s):  
Juliane Wagner ◽  
Manfred Curbach

For the economical construction of fatigue loaded structures with textile reinforced concrete (TRC), it is necessary to investigate the fatigue behavior of the materials. Since next to the tensile load-bearing behavior, the bond behavior of a material is crucial as well, the present paper deals with the bond fatigue of TRC with epoxy-impregnated carbon textiles. First, static tests are carried out to determine the sufficient anchorage length of the investigated material combination. Afterwards, the influence of cyclic loading on the necessary anchorage length, deformation, stiffness, and residual strength is investigated. The results of the cyclic tests are summarized in stress-number of cycles to failure (S-N) diagrams. In the end, it can be said that the cyclic loading has no negative impact on the necessary anchorage length. If specimens withstand the cyclic loading, there is no difference between their residual strength and the reference strength. The failure of specimens occurs only at high load levels, provided that the anchorage length is sufficient.


2018 ◽  
Vol 165 ◽  
pp. 06001 ◽  
Author(s):  
André Reck ◽  
Stefan Pilz ◽  
Ulrich Thormann ◽  
Volker Alt ◽  
Annett Gebert ◽  
...  

This study examined the fatigue properties of a newly developed cast and thermomechanical processed (β)-Ti-40Nb alloy for a possible application as biomedical alloy due to exceptional low Young’s modulus (64-73 GPa), high corrosion resistance and ductility (20-26%). Focusing on the influence of two microstructural states with fully recrystallized β-grain structure as well as an aged condition with nanometer-sized ω-precipitates, tension-compression fatigue tests (R=-1) were carried out under lab-air and showed significant differences depending on the β-phase stability under cyclic loading. Present ω- precipitates stabilized the β-phase against martensitic α’’ phase transformations leading to an increased fatigue limit of 288 MPa compared to the recrystallized state (225 MPa), where mechanical polishing and subsequent cyclic loading led to formation of α’’-phase due to the metastability of the β-phase. Additional studied commercially available (β)-Ti-45Nb alloy revealed slightly higher fatigue strength (300 MPa) and suggest a change in the dominating cyclic deformation mechanisms according to the sensitive dependence on the Nb-content. Further tests in simulated body fluid (SBF) at 37°C showed no decrease in fatigue strength due to the effect of corrosion and prove the excellent corrosion fatigue resistance of this alloy type under given test conditions.


2019 ◽  
Vol 19 (2) ◽  
pp. 461-467
Author(s):  
Tomohisa Suzuki ◽  
Yusuke Yasuda ◽  
Takeshi Terasaki ◽  
Toshiaki Morita ◽  
Yuki Kawana ◽  
...  

2013 ◽  
Vol 89 ◽  
pp. 194-201 ◽  
Author(s):  
Guillaume Seon ◽  
Andrew Makeev ◽  
Yuri Nikishkov ◽  
Edward Lee

Sign in / Sign up

Export Citation Format

Share Document