Study on the effect of silica–graphite filler on the rheometric, mechanical, and abrasion loss properties of styrene–butadiene rubber vulcanizates

2018 ◽  
Vol 51 (4) ◽  
pp. 359-378 ◽  
Author(s):  
AM Shanmugharaj ◽  
K Thileep Kumar ◽  
G Sivagaami Sundari ◽  
E Senthil Kumar ◽  
A Ashwini ◽  
...  

Silica–graphite filler was prepared via two-step grafting procedure by grafting silica particles onto the expanded graphite. In the first step, isocyanatopropyltriethoxysilane was chemically introduced onto the silica aggregates, which was followed by grafting onto the expanded graphite via urethane linkage in the second step. Successful grafting of silica aggregates onto the graphite was corroborated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The presence of a thin graphene layer on silica aggregates corroborated using transmission electron microscopy confirmed the grafting of silica aggregates onto the graphite surface. Styrene–butadiene rubber (SBR) composites with various silica–graphite loadings were prepared by melt processing technique to generate pristine silica and silica–graphite-filled elastomeric composites. Rheometric cure studies revealed that the torque difference (Δ S) increased with pristine silica loading, when compared to the unfilled SBR system, and this effect is more pronounced on loading silica–graphite filler. Improvements in mechanical properties such as modulus and tensile strength were observed with increasing loading of silica particles and this effect is more pronounced on loading silica–graphite fillers, indicating that this is due to the rise in the elastomer–filler interactions in the silica–graphite-loaded SBR systems. This fact was further corroborated using bound rubber content and equilibrium swelling ratios of the unvulcanized and vulcanized SBR composites.

2019 ◽  
pp. 000-000
Author(s):  
Qing-Yuan Han ◽  
Xu Li ◽  
Yu-Chun Li ◽  
You-Ping Wu

ABSTRACT The compatibility between solution polymerized styrene–butadiene rubber (SSBR 2466) and natural rubber (NR) is characterized by differential scanning calorimetry and dynamic mechanical thermal analysis. The single glass transition in the entire temperature range of all NR/SSBR blends and good correlation between Tg and SSBR fraction prove the excellent compatibility between SSBR 2466 and NR. With increasing SSBR content, a reduced Payne effect, more homogeneous dispersion of silica, stronger rubber–filler interaction, and more silica selectively distributed in the SSBR phase were determined via rubber-processing analysis, transmission electron microscopy, bound rubber, and thermogravimetric analysis, respectively. The high vinyl content, low styrene content, and end-functionalized structure of SSBR play vital roles in promoting its compatibility with NR and a stronger rubber–silica linkage. The resulting increased tan δ at 0 °C and low tan δ at 60 °C indicates good wet-skid resistance and low rolling resistance by blending SSBR 2466, and 70/30 NR/SSBR is the best balance for producing a “green tire” tread.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
R. Rajasekar ◽  
Gert Heinrich ◽  
Amit Das ◽  
Chapal Kumar Das

The significant factor that determines the improvement of properties in rubber by the incorporation of nanoclay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nanoclay will not contribute for the good dispersion of nanofiller in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nanoclay in the matrix polymer. Epoxidized natural rubber and organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay employed in this study is Cloisite 20A. The obtained nanocomposites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nanoclay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nanoclay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.


2018 ◽  
Vol 45 (1) ◽  
pp. 5-9
Author(s):  
A.M. Mokhnatkin ◽  
V.P. Dorozhkin ◽  
E.G. Mokhnatkina ◽  
V.E. Muradyan ◽  
L.A. Zotov ◽  
...  

A specially designed relaxometer was used to measure the stress relaxation under 30% elongation for tread rubber compounds based on a blend of three rubbers: natural rubber, neodymium butadiene rubber, and oil-extended styrene butadiene rubber. The rubber compounds were filled with carbon black and silica in different ratios: with 80 parts carbon black only, with 80 parts silica only, and with different ratios of carbon black and silica. The method proposed by Bartenev was used to calculate the relaxation specta. The maxima of the spectra at different relaxation times were assigned to different types of interaction: rubber-filler interaction, carbon black-carbon black interaction, silica-silica interaction, carbon black-silica interaction. New maxima were obtained for specimens containing roughly equal amounts of carbon black and silica. These results were compared with data obtained using transmission electron microscopy. The existence of three levels of structure of filled elastomers and the presence of ‘rigid’ rubber around filler particles are suggested.


2016 ◽  
Vol 89 (4) ◽  
pp. 689-699
Author(s):  
Zhihua Qiao ◽  
Ruimin Li ◽  
Li Zhang ◽  
Di Zhang

ABSTRACT Microencapsulated ammonium polyphosphate with polyurethane resin (PUMAPP) was prepared by in situ polymerization and was characterized by X-ray photoelectron spectroscopy. The particle's water solubility was decreased through the microencapsulation of ammonium polyphosphate (APP) with the polyurethane resin. The flame retardation of APP/pentaerythritol (PER) and PUMAPP/PER flame retarded styrene–butadiene rubber (SBR) composites was studied using limiting oxygen index and UL-94 tests, and the thermal stability was evaluated by thermogravimetric analysis and microscale combustion colorimeter. Results demonstrated that the flame retardancy of the SBR/PUMAPP/PER composites was better than that of the SBR/APP/PER composites at the same additive loading. The water-resistant properties of the SBR composites containing PUMAPP and APP were also studied. Scanning electron microscopy and Fourier transform infrared spectrometry were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly, and the mechanical properties of the materials were also studied.


1998 ◽  
Vol 71 (2) ◽  
pp. 289-299 ◽  
Author(s):  
A. S. Hashim ◽  
B. Azahari ◽  
Y. Ikeda ◽  
S. Kohjiya

Abstract Bis(3-triethoxysilylpropyl)tetrasulfide (TESPT) was found to affect the curing characteristics and the physical properties of styrene-butadiene (SBR) gum rubber and xin situ silica-filled SBR vulcanizates. Silica incorporated by the in situ sol-gel reaction of tetraethoxysilane with TESPT showed a much higher reinforcing efficiency than did conventional mechanical mixing and the in situ method without TESPT. The higher reinforcing efficiency is attributed to the formation of a silica-rubber network, which also changed the dynamic mechanical behavior of the SBR vulcanizates. Transmission electron microscopy observations showed in situ silica incorporation of very fine particles in comparison to the sol-gel process without TESPT.


Sign in / Sign up

Export Citation Format

Share Document