Finite time control strategy for satellite attitude maneuver based on hybrid actuator

2017 ◽  
Vol 40 (9) ◽  
pp. 2798-2806 ◽  
Author(s):  
Dong Ye ◽  
Xiao Zhang ◽  
Xucheng Wan ◽  
Zhaowei Sun

In this paper, a Nonsingular Terminal Sliding Mode Control (NTSMC) strategy is investigated to address the finite-time attitude tracking problem of a rigid spacecraft. Hybrid thruster and flywheel actuator system is used for rapid reorientation under external disturbance. The reference torque is obtained from time-optimal attitude trajectory, and it is exerted on the satellite by thrusters in the form of feedforward compensation. Owing to thruster output torque deviation, initial measurement error and external disturbances, the practical trajectory of a satellite would deviate from reference trajectory. In order for the satellite to track the reference trajectory in finite time, the correction torque is deduced based on the error between reference trajectory and real-time measurements, and then applied through flywheels in the form of feedback compensation. The NTSMC method is used to solve nonsingular problem and to improve the control precision of the satellite attitude tracking issue. The numerical simulation results show that this control strategy is effective and it has great robustness.

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
You Li ◽  
Haizhao Liang

Robust finite-time control algorithms for satellite attitude maneuvers are proposed in this paper. The standard sliding mode is modified, hence the inherent robustness could be maintained, and this fixed sliding mode is modified to dynamic, therefore the finite-time stability could be achieved. First, the finite -time sliding mode based on attitude quaternion is proposed and the loose finite-time stability is achieved by enlarging the sliding mode parameter. In order to get the strict finite-time stability, a sliding mode based on the Euler axis is then given. The fixed norm property of the Euler axis is used, and a sliding mode parameter without singularity issue is achieved. System performance near the equilibrium point is largely improved by the proposed sliding modes. The singularity issue of finite-time control is solved by the property of rotation around a fixed axis. System finite-time stability and robustness are analyzed by the Lyapunov method. The superiority of proposed controllers and system robustness to some typical perturbations such as disturbance torque, model uncertainty and actuator error are demonstrated by simulation results.


2018 ◽  
Vol 41 (2) ◽  
pp. 405-416 ◽  
Author(s):  
Haitao Chen ◽  
Shenmin Song ◽  
Xuehui Li

This paper studies the finite time spacecraft attitude tracking control problem, while considering modeling uncertainty, external disturbances and control input saturation. A novel integral terminal sliding mode surface (ITSMS) is designed by combining the fast terminal sliding mode surface (FTSMS) with a low pass filter to achieve a fast finite time convergence rate for the control system, without input singularity. An auxiliary signal is used to compensate for the effects of actuator saturation. The basic controller is first formulated based on the ITSMS, fast-TSM-type reaching law and auxiliary system, in the presence of an external disturbance and input saturation. Then, an adaptive control procedure is introduced, which simultaneously handles modeling uncertainty and external disturbance, thereby creating an adaptive attitude tracking controller. The proposed controller provides a fast finite time convergence rate for the control system, based on the newly designed ITSMS, while simultaneously compensating for modeling uncertainty, external disturbances and input saturation, without restricting the parameter selection process nor requiring repeated differentiation of nonlinear functions. Finally, digital simulation results are presented and demonstrate the effectiveness of the proposed controllers.


2012 ◽  
Vol 157-158 ◽  
pp. 847-851
Author(s):  
Shu Nan Wu ◽  
Zhao Wei Sun ◽  
Xian De Wu

The attitude maneuver control of flexible spacecraft with finite-time convergence is investigated in this paper. Two terminal sliding mode controllers are proposed to achieve the finite-time control, which guarantee the convergence of attitude maneuver errors in finite time. The singularity problem associated with the terminal sliding mode control is solved by employing a new sliding variable. Numerical simulations are finally provided to illustrate the performance of the proposed controllers.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Mingyi Huo ◽  
Xing Huo ◽  
Hamid Reza Karimi ◽  
Jianfei Ni

The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is proved that the closed-loop attitude tracking system is finite-time stable. The tracking errors of the attitude and the angular velocity are asymptotically stabilized. Moreover, the upper bound on the lumped uncertainty can be exactly estimated in finite time. The attitude tracking performance with application of the control scheme is evaluated through a numerical example.


Author(s):  
Bo Su ◽  
Hongbin Wang ◽  
Ning Li

In this paper, an event-triggered integral sliding mode fixed-time control method for trajectory tracking problem of autonomous underwater vehicle (AUV) with disturbance is investigated. Initially, the global fixed time stability is ensured with conventional periodic sampling method for reference trajectory tracking. By introducing fixed time integral sliding mode manifold, fixed time control strategy is expressed for the AUV, which can effectively eliminate the singularity. Correspondingly, in order to reduce the damage caused by chattering phenomenon, an adaptive fixed-time method is proposed based on the designed continuous integral terminal sliding mode (ITSM) to ensure that the trajectory tracking for AUV is achieved in fixed-time with external disturbance. In order to reduce resource consumption in the process of transmission network, the event-triggered sliding mode control strategy is designed which condition is triggered by an event. Also, Zeno behavior is avoided by proof of theoretical. It is shown that the upper bounds of settling time are only dependent on the parameters of controller. Theoretical analysis and simulation experiment results show that the presented methods can realize the control object.


Automatica ◽  
2005 ◽  
Vol 41 (11) ◽  
pp. 1957-1964 ◽  
Author(s):  
Shuanghe Yu ◽  
Xinghuo Yu ◽  
Bijan Shirinzadeh ◽  
Zhihong Man

Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


Author(s):  
Vo Anh Tuan ◽  
Hee-Jun Kang

In this study, a new finite time control method is suggested for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting method. First, to avoid the singularity drawback and achieve the finite time convergence of positional errors with a fast transient response rate, nonsingular fast terminal sliding variables are constructed in the position errors' state space. Next, adaptive tuning laws based on the super-twisting scheme are presented for the switching control law of terminal sliding mode control (TSMC) so that a continuous control law is extended to reject the effects of chattering behavior. Finally, a new finite time control method ensures that sliding motion will take place, regardless of the effects of the perturbations and uncertainties on the robot system. Accordingly, the stabilization and robustness of the suggested control system can be guaranteed with high-precision performance. The robustness issue and the finite time convergence of the suggested system are totally confirmed by the Lyapunov stability principle. In simulation studies, the experimental results exhibit the effectiveness and viability of our proposed scheme for joint position tracking control of a 3DOF PUMA560 robot.


Author(s):  
Shaobo Ni ◽  
Jiayuan Shan

Purpose – The purpose of this paper is to present a sliding mode attitude controller for reusable launch vehicle (RLV) which is nonlinear, coupling, and includes uncertain parameters and external disturbances. Design/methodology/approach – A smooth second-order nonsingular terminal sliding mode (NTSM) controller is proposed for RLV in reentry phase. First, a NTSM manifold is proposed for finite-time convergence. Then a smooth second sliding mode controller is designed to establish the sliding mode. An observer is utilized to estimate the lumped disturbance and the estimation result is used for feedforward compensation in the controller. Findings – It is mathematically proved that the proposed sliding mode technique makes the attitude tracking errors converge to zero in finite time and the convergence time is estimated. Simulations are made for RLV through the assumption that aerodynamic parameters and atmospheric density are perturbed. Simulation results demonstrate that the proposed control strategy is effective, leading to promising performance and robustness. Originality/value – By the proposed controller, the second-order sliding mode is established. The attitude tracking error converges to zero in a finite time. Meanwhile, the chattering is alleviated and a smooth control input is obtained.


Sign in / Sign up

Export Citation Format

Share Document