Event-triggered based distributed H∞ consensus filtering for discrete-time delayed systems over lossy sensor network

2017 ◽  
Vol 40 (9) ◽  
pp. 2740-2747 ◽  
Author(s):  
Shenquan Wang ◽  
Yuenan Wang ◽  
Yulian Jiang ◽  
Yuanchun Li

This paper investigates the issue of event-triggered distributed H∞ consensus filtering for discrete time-varying delay systems over lossy sensor networks with stochastic switching topologies. For each sensor node, the event-triggering mechanism is given by an event detector, which determines whether to transmit the output measurement or not. The communication links between the event detector and the distributed filter are assumed to be over a lossy network, and the missing probability is governed by a set of random variables. Through available output measurements from not only the individual sensor but also its neighbouring sensors, according to the interconnection topology to estimate the system states, a sufficient condition is established for the desired distributed filter to ensure that the overall filtering dynamics are stochastically stable and achieve a prescribed distributed H∞ average performance. Meanwhile, the corresponding solvability conditions for the desired distributed filter gains are characterized in terms of feasibility linear matrix inequalities. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed approaches.

Author(s):  
Venkatesh Modala ◽  
Sourav Patra ◽  
Goshaidas Ray

Abstract This paper presents the design of an observer-based stabilizing controller for linear discrete-time systems subject to interval time-varying state-delay. In this work, the problem has been formulated in convex optimization framework by constructing a new Lyapunov-Krasovskii (LK) functional to derive a delay-dependent stabilization criteria. The summation inequality and the extended reciprocally convex inequality are exploited to obtain a less conservative delay upper bound in linear matrix inequality (LMI) framework. The derived stability conditions are delay-dependent and thus, ensure global asymptotic stability in presence of any time delay less than the obtained delay upper bound. Numerical examples are included to demonstrate the usefulness of the developed results.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Zheng-Fan Liu ◽  
Chen-Xiao Cai ◽  
Wen-Yong Duan

This paper is concerned with the problem of exponential stability andH∞model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF) approach, sufficient conditions for exponential stability withH∞performance of such systems are derived in terms of linear matrix inequalities (LMIs). For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and anH∞error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xiu-feng Miao ◽  
Long-suo Li

AbstractThis paper considers the problem of estimating the state vector of uncertain stochastic time-delay systems, while the system states are unmeasured. The system under study involves parameter uncertainties, noise disturbances and time delay, and they are dependent on the state. Based on the Lyapunov–Krasovskii functional approach, we present a delay-dependent condition for the existence of a state observer in terms of a linear matrix inequality. A numerical example is exploited to show the validity of the results obtained.


2021 ◽  
pp. 107754632110069
Author(s):  
Parvin Mahmoudabadi ◽  
Mahsan Tavakoli-Kakhki

In this article, a Takagi–Sugeno fuzzy model is applied to deal with the problem of observer-based control design for nonlinear time-delayed systems with fractional-order [Formula: see text]. By applying the Lyapunov–Krasovskii method, a fuzzy observer–based controller is established to stabilize the time-delayed fractional-order Takagi–Sugeno fuzzy model. Also, the problem of disturbance rejection for the addressed systems is studied via the state-feedback method in the form of a parallel distributed compensation approach. Furthermore, sufficient conditions for the existence of state-feedback gains and observer gains are achieved in the terms of linear matrix inequalities. Finally, two numerical examples are simulated for the validation of the presented methods.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250300 ◽  
Author(s):  
FERNANDO O. SOUZA ◽  
REINALDO M. PALHARES ◽  
EDUARDO M. A. M. MENDES ◽  
LEONARDO A. B. TORRES

The problem of control synthesis for master–slave synchronization of continuous time chaotic systems of Lur'e type using sampled feedback control subject to sampling time random fluctuation and data packet dropouts is investigated. New stability and stabilization conditions are proposed based on Linear Matrix Inequalities (LMIs). The idea is to connect two very efficient approaches to deal with delayed systems: the discretized Lyapunov functional for systems with pointwise delay and the convex analysis for systems with time-varying delay. Simulation examples based on synchronizing coupled Chua's circuits are used to illustrate the effectiveness of the proposed methodology.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Priyanka Kokil ◽  
V. Krishna Rao Kandanvli ◽  
Haranath Kar

This paper is concerned with the problem of global asymptotic stability of linear discrete-time systems with interval-like time-varying delay in the state. By utilizing the concept of delay partitioning, a new linear-matrix-inequality-(LMI-) based criterion for the global asymptotic stability of such systems is proposed. The proposed criterion does not involve any free weighting matrices but depends on both the size of delay and partition size. The developed approach is extended to address the problem of global asymptotic stability of state-delayed discrete-time systems with norm-bounded uncertainties. The proposed results are compared with several existing results.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Vipin Chandra Pal ◽  
Richa Negi ◽  
Quanxin Zhu

This paper examines the stability analysis of discrete-time control systems particularly during the event of actuator saturation and time-varying state delay. With the help of Wirtinger inequality along with Lyapunov-Krasovskii functional gain of state feedback controller is determined for stabilization of above system. The saturation nonlinearity is represented in the terms of convex hull. A new linear matrix inequality (LMI) criterion is settled with reciprocally convex combination based inequality which is dependent on delay. The proposed criterion is less conservative in concern to increase the delay bound and a controller is also simulated for real time problem of missile control system in this paper. It is also attained that projected stability criterion is less conservative compared to other outcomes. Furthermore, an optimization procedure together with LMI constraints has been proposed to maximize the attraction of domain.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zifan Gao ◽  
Jiaxiu Yang ◽  
Shuqian Zhu

This paper develops some improved stability and stabilization conditions of T-S fuzzy system with constant time-delay and interval time-varying delay with its derivative bounds available, respectively. These conditions are presented by linear matrix inequalities (LMIs) and derived by applying an augmented Lyapunov-Krasovskii functional (LKF) approach combined with a canonical Bessel-Legendre (B-L) inequality. Different from the existing LKFs, the proposed LKF involves more state variables in an augmented way resorting to the form of the B-L inequality. The B-L inequality is also applied in ensuring the positiveness of the constructed LKF and the negativeness of derivative of the LKF. By numerical examples, it is verified that the obtained stability conditions can ensure a larger upper bound of time-delay, the larger number of Legendre polynomials in the stability conditions can lead to less conservative results, and the stabilization condition is effective, respectively.


Sign in / Sign up

Export Citation Format

Share Document