Analysis, design and implementation of analog circuitry-based maximum power point tracking for photovoltaic boost DC/DC converter

2018 ◽  
Vol 41 (3) ◽  
pp. 668-686 ◽  
Author(s):  
Priyabrata Shaw ◽  
Priyabrat Garanayak

Currently, research is being devoted towards the development of fast and precise maximum power point tracking (MPPT) methods for various photovoltaic (PV) applications. Due to rapidly varying solar irradiation and cell temperature, traditional MPPT algorithms are unable to track the optimum power from PV modules. In this paper, an analog circuitry-based fast and robust MPPT method utilizing a boost DC/DC converter is presented to improve the tracking capability. The mathematical model of a PV module and design expressions for converter elements are presented. To trace the desired maximum power point (MPP), a control law is derived by synthesizing the PV characteristic curves. The steady-state and transient responses of the PV-integrated boost converter are demonstrated under various conditions of source and load using the MATLAB/Simulink platform. Furthermore, a laboratory prototype is developed to validate the proposed control strategy in the real-time application. A satisfactory agreement has been exhibited among simulation and experimental results. The superiority of the proposed MPP tracker over different existing methods is investigated. Additionally, the proposed controller distributes the energy spectrum over a wider range of frequencies and simultaneously reduces the energy concentration at the clock frequency and its multiples, so that the effect of electromagnetic interference (EMI) is reduced for certain range of loads.

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6722
Author(s):  
Mehmet Ali Yildirim ◽  
Marzena Nowak-Ocłoń

Solar photovoltaic (PV) energy is one of the most viable renewable energy sources, considered less polluting than fossil energy. However, the average power conversion efficiency of PV systems is between 15% and 20%, and they must operate with high efficiency. Photovoltaic cells have non-linear voltage–current characteristics that are dependent on environmental factors such as solar irradiation and temperature, and have low efficiency. Therefore, it becomes crucial to harvest the maximum power from PV panels. This paper aims to study and analyze the most common and well-known maximum power point tracking (MPPT) algorithms, perturb and observe (P&O) and incremental conductance (IncCond). These algorithms were found to be easy to implement, low-cost techniques suitable for large- and medium-sized photovoltaic applications. The algorithms were tested and compared dynamically using MATLAB/Simulink software. In order to overcome the low performance of the P&O and IncCond methods under time-varying and fast-changing solar irradiation, several modifications are proposed. Results show an improvement in the tracking and overall system efficiencies and a shortened response time compared with original techniques. In addition, the proposed algorithms minimize the oscillations around the maximum power point (MPP), and the power converges faster.


Author(s):  
Jyotsana Pandey

— The intermittent nature of solar irradiation makes it necessary to continuously track the irradiation and change the orientation of the solar panels so as to maximize the PV output. Since the nature of solar irradiation data is both extremely random and complex, hence classical statistical techniques render inaccuracies in the predicted values. Therefore, machine learning based approaches are needed for the estimation or forecasting of the PV output. The proposed approach employs the gradient descent-based approach for attaining the condition of maximum power point tracking (MPPT). The performance of the system has been evaluated in terms of the mean absolute percentage error and accuracy. It has been shown that the proposed system attains an accuracy of 96.31% with an MAPE of 3.69%.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nimrod Vázquez ◽  
Yuz Azaf ◽  
Ilse Cervantes ◽  
Eslí Vázquez ◽  
Claudia Hernández

Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3256 ◽  
Author(s):  
Amjad Ali ◽  
K. Almutairi ◽  
Muhammad Zeeshan Malik ◽  
Kashif Irshad ◽  
Vineet Tirth ◽  
...  

Significant growth in solar photovoltaic (PV) installation has been observed during the last decade in standalone and grid-connected power generation systems. However, the PV system has a non-linear output characteristic because of weather intermittency, which tends to a substantial loss in overall system output. Thus, to optimize the output of the PV system, maximum power point tracking (MPPT) techniques are used to track the global maximum power point (GMPP) and extract the maximum power from the PV system under different weather conditions with better precision. Since MPPT is an essential part of the PV system, to date, many MPPT methods have been developed by various researchers, each with unique features. A Google Scholar survey of the last five years (2015–2020) was performed to investigate the number of review articles published. It was found that overall, seventy-one review articles were published on different MPPT techniques; out of those, only four were on non-uniform solar irradiance, and seven review articles included shading conditions. Unfortunately, very few attempts were made in this regard. Therefore, a comprehensive review paper on this topic is needed, in which almost all the well-known MPPT techniques should be encapsulated in one document. This article focuses on online and soft-computing MPPT algorithm classifications under non-uniform irradiance conditions along with their mathematical expression, operating principles, and block diagram/flow charts. It will provide a direction for future research and development in the field of maximum power point tracking optimization.


Author(s):  
Xiao Li ◽  
Yaoyu Li ◽  
John E. Seem ◽  
Peng Lei

Due to the relatively higher cost of energy (COE) for the photovoltaic (PV) systems, it is crucial to locate the maximum power point (MPP) so as to increase the system efficiency. The nonlinear PV characteristic curve and the MPP depend on PV’s intrinsic characteristics and environment conditions such as solar irradiation intensity and temperature. Maximum power point tracking (MPPT) control serves to seek the MPP of the PV system with the unpredicted environment uncertainties. In this paper, the adaptive extremum seeking control (AESC) scheme is investigated for the PV MPPT, which optimizes the duty ratio for the pulse-width modulator (PWM) of the DC-DC converter. The adopted AESC scheme utilizes an explicit structure information of the PV-buck system based on the system states and unknown PV characteristics. The radial basis function (RBF) neural network has been used to approximate the unknown nonlinear I-V curve. A Lyapunov-based adaptive learning control technique is used to ensure the convergence of the system to a neighborhood of the optimum which depends on the approximation error. The performance of the controller is verified through simulation.


2017 ◽  
Vol 5 (2) ◽  
pp. 119-121
Author(s):  
S. K. Mahobia

The uniform solar irradiation in the photovoltaic cells, power-voltage characteristics must be unique and the maximum powers are generated from PV cells. The MPPT Device are an essential part for photovoltaic power generation system. Maximum Power Point Tracking (MPPT) are used to optimize photovoltaic cells power.


2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Ahmed G. Abo-Khalil ◽  
◽  

The photovoltaic (PV) system is always operated at the maximum power point (MPP) condition irrespective of the fluctuations in PV voltage. The maximum power point tracking (MPPT) employed in PV system is not effective during the presence of current ripple as normal tracking becomes increasingly complex during fluctuation in solar irradiation or due to change in MPP condition. This paper proposes a high-efficiency power point tracking algorithm to minimize the current ripple and power oscillation around the maximum power point. The developed algorithm is based on particle swarm optimization-support vector regression (PSO-SVR) technique. The proposed algorithm is implemented to select and tune the Support Vector Regression (SVR) parameters such as kernel parameters, variance, and the penalty factor for predicting the irradiation level as well as to determine the PV voltage corresponding of maximum power point. The PSO method is used to accelerate the process of optimizing the SVR parameters at different conditions and get knowledge about the corresponding global optimum. From the experimental results,the efficiency of maximum power point tracking is found to be 99.8%. The proposed algorithm PSO-SVR shows a better performance than using SVR alone. The stability and accuracy of MPPT have been validated during the rapid fluctuation of solar irradiation in the range of 25% to 100%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dongrui Li ◽  
Jinjin Li ◽  
Ning Wang

One of the most critical tasks during the application of photovoltaic (PV) systems is to harvest the optimal output power at various environmental scenarios, which is called maximum power point tracking (MPPT). Though plenty of advanced techniques are developed to achieve this purpose, most of them have corresponding prominent disadvantages, such as inefficient tracking ability, high computation burden, and complex convergence mechanism. Therefore, this work aims to propose a novel and powerful bio-inspired meta-heuristic optimization algorithm called peafowl optimization algorithm (POA), which is inspired by the group food searching behaviors of peafowl swarm. It can effectively achieve a suitable balance between local exploitation and global exploration thanks to its efficient exploratory and exploitative searching operators. Thus, a satisfactory MPPT performance for PV systems under partial shading condition (PSC) can be obtained based on POA. Moreover, two case studies, e.g., start-up test and step change in solar irradiation with constant temperature, are adopted to fairly and comprehensively validate the superiority and effectiveness of POA in contrast with particle swarm optimization (PSO) and teaching-learning-based optimization (TLBO), respectively.


2013 ◽  
Vol 448-453 ◽  
pp. 1542-1546
Author(s):  
Nan Jin ◽  
Dong Dong Gu ◽  
Guang Zhao Cui

The output characteristics of photovoltaic (PV) cells are usually nonlinear, influenced by solar irradiation, environmental temperature and load characteristics. The maximum output power of PV cells changes with external environment. In order to improve the system efficiency and make PV cells work near the maximum power point (MPP), it is necessary to adjust the operating point. A variety of maximum power point tracking (MPPT) methods have been proposed. This paper compares these methods and summarizes the advantages and disadvantages of them. Finally, the key problems and development prospects of MPPT technology are analyzed.


Sign in / Sign up

Export Citation Format

Share Document