Review of Maximum Power Point Tracking Technology for Photovoltaic Cells

2013 ◽  
Vol 448-453 ◽  
pp. 1542-1546
Author(s):  
Nan Jin ◽  
Dong Dong Gu ◽  
Guang Zhao Cui

The output characteristics of photovoltaic (PV) cells are usually nonlinear, influenced by solar irradiation, environmental temperature and load characteristics. The maximum output power of PV cells changes with external environment. In order to improve the system efficiency and make PV cells work near the maximum power point (MPP), it is necessary to adjust the operating point. A variety of maximum power point tracking (MPPT) methods have been proposed. This paper compares these methods and summarizes the advantages and disadvantages of them. Finally, the key problems and development prospects of MPPT technology are analyzed.

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6722
Author(s):  
Mehmet Ali Yildirim ◽  
Marzena Nowak-Ocłoń

Solar photovoltaic (PV) energy is one of the most viable renewable energy sources, considered less polluting than fossil energy. However, the average power conversion efficiency of PV systems is between 15% and 20%, and they must operate with high efficiency. Photovoltaic cells have non-linear voltage–current characteristics that are dependent on environmental factors such as solar irradiation and temperature, and have low efficiency. Therefore, it becomes crucial to harvest the maximum power from PV panels. This paper aims to study and analyze the most common and well-known maximum power point tracking (MPPT) algorithms, perturb and observe (P&O) and incremental conductance (IncCond). These algorithms were found to be easy to implement, low-cost techniques suitable for large- and medium-sized photovoltaic applications. The algorithms were tested and compared dynamically using MATLAB/Simulink software. In order to overcome the low performance of the P&O and IncCond methods under time-varying and fast-changing solar irradiation, several modifications are proposed. Results show an improvement in the tracking and overall system efficiencies and a shortened response time compared with original techniques. In addition, the proposed algorithms minimize the oscillations around the maximum power point (MPP), and the power converges faster.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 816 ◽  
Author(s):  
Jae-Sub Ko ◽  
Jun-Ho Huh ◽  
Jong-Chan Kim

This paper presents an overview of the maximum power point tracking (MPPT) methods for photovoltaic (PV) systems used in the Micro Grids of PV systems. In the PV system, the output varies nonlinearly with temperature and radiation, and the point at which power is maximized appears accordingly. The MPPT of the PV system can improve output by about 25%, and it is very important to operate at this point at all times. Various methods of tracking the MPP of the PV system have been studied and proposed. In this paper, we discuss commonly used methods for the MPPT of PV systems, methods using artificial intelligence control, and mixed methods, and present the characteristics, advantages, and disadvantages of each method.


2014 ◽  
Vol 953-954 ◽  
pp. 52-56
Author(s):  
Wei Du ◽  
Wei Han ◽  
You Fei Tan

In order to increase the output power of the photovoltaic system, the maximum power point tracking is needed. As the starting point of research in the output nonlinear characteristics, analysis of the advantages and disadvantages of the conventional algorithm and have the poor dynamic and steady-state performance of the maximum power point tracking(MPPT), the improvement method of golden section(IGSS) is applied to the photovoltaic power generation system. The results indicate that the method can quickly track the maximum power point of photovoltaic cells.


2012 ◽  
Vol 588-589 ◽  
pp. 1624-1627
Author(s):  
Qi Ping Yuan ◽  
Yu Fei Liu ◽  
Ting Ting Chi

In the entire PV system, the maximum power point tracking (MPPT) has become an important part of the essential, the maximum power point tracking can improve the output power of photovoltaic power generation system as to improve the overall system power. Constant Voltage Tracking (CVT), Perturbation and Observation (P&O), incremental Conductivity, Short circuit control, Hysteresis comparing are the most commonly used methods. Due to a variety of methods have their advantages and disadvantages to each other, to improve efficiency, control accuracy, speed up the response, this paper, put up a program based on reforming the progress in dual-mode maximum power point tracking and this program can be faster and more accurate to find the maximum power point in the current environment, also reduce the oscillation near the maximum power point and improve the efficiency of solar photovoltaic grid-connected system.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Mohsen Taherbaneh ◽  
A. H. Rezaie ◽  
H. Ghafoorifard ◽  
K. Rahimi ◽  
M. B. Menhaj

In applications with low-energy conversion efficiency, maximizing the output power improves the efficiency. The maximum output power of a solar panel depends on the environmental conditions and load profile. In this paper, a method based on simultaneous use of two fuzzy controllers is developed in order to maximize the generated output power of a solar panel in a photovoltaic system: fuzzy-based sun tracking and maximum power point tracking. The sun tracking is performed by changing the solar panel orientation in horizontal and vertical directions by two DC motors properly designed. A DC-DC converter is employed to track the solar panel maximum power point. In addition, the proposed system has the capability of the extraction of solar panelI-Vcurves. Experimental results present that the proposed fuzzy techniques result in increasing of power delivery from the solar panel, causing a reduction in size, weight, and cost of solar panels in photovoltaic systems.


2018 ◽  
Vol 41 (3) ◽  
pp. 668-686 ◽  
Author(s):  
Priyabrata Shaw ◽  
Priyabrat Garanayak

Currently, research is being devoted towards the development of fast and precise maximum power point tracking (MPPT) methods for various photovoltaic (PV) applications. Due to rapidly varying solar irradiation and cell temperature, traditional MPPT algorithms are unable to track the optimum power from PV modules. In this paper, an analog circuitry-based fast and robust MPPT method utilizing a boost DC/DC converter is presented to improve the tracking capability. The mathematical model of a PV module and design expressions for converter elements are presented. To trace the desired maximum power point (MPP), a control law is derived by synthesizing the PV characteristic curves. The steady-state and transient responses of the PV-integrated boost converter are demonstrated under various conditions of source and load using the MATLAB/Simulink platform. Furthermore, a laboratory prototype is developed to validate the proposed control strategy in the real-time application. A satisfactory agreement has been exhibited among simulation and experimental results. The superiority of the proposed MPP tracker over different existing methods is investigated. Additionally, the proposed controller distributes the energy spectrum over a wider range of frequencies and simultaneously reduces the energy concentration at the clock frequency and its multiples, so that the effect of electromagnetic interference (EMI) is reduced for certain range of loads.


Author(s):  
Jyotsana Pandey

— The intermittent nature of solar irradiation makes it necessary to continuously track the irradiation and change the orientation of the solar panels so as to maximize the PV output. Since the nature of solar irradiation data is both extremely random and complex, hence classical statistical techniques render inaccuracies in the predicted values. Therefore, machine learning based approaches are needed for the estimation or forecasting of the PV output. The proposed approach employs the gradient descent-based approach for attaining the condition of maximum power point tracking (MPPT). The performance of the system has been evaluated in terms of the mean absolute percentage error and accuracy. It has been shown that the proposed system attains an accuracy of 96.31% with an MAPE of 3.69%.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3182 ◽  
Author(s):  
M. Bani Salim ◽  
H. S. Hayajneh ◽  
A. Mohammed ◽  
S. Ozcelik

Tracking the maximum output power of a photovoltaic (PV) cell is an important problem to harvest more energy at different weather and load conditions. This paper presents the design and simulation of a robust direct adaptive controller (RDAC) for maximum power point tracking (MPPT) device based on boost converter topology. A mathematical model is developed, and a suitable RDAC is designed for MPPT device, and simulations are performed using MATLAB/Simulink to verify the controller’s robustness at varying operating conditions. The real-time irradiance and temperature data are used on an hourly basis to test the suggested MPPT adaptive controller for a typical sunny day in summer and winter. The simulation results show that the RDAC performs excellent tracking under varying conditions such as irradiance, temperature, load, boost converter inductance, and capacitance.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Nimrod Vázquez ◽  
Yuz Azaf ◽  
Ilse Cervantes ◽  
Eslí Vázquez ◽  
Claudia Hernández

Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.


Sign in / Sign up

Export Citation Format

Share Document