Sub-fixed-time control for a class of second order system

Author(s):  
Boyan Jiang ◽  
Hua Chen ◽  
Bo Li ◽  
Xuewu Zhang

In this paper, a new concept “sub-fixed-time stability” (SFTS) is proposed and studied, which means the states can converge to a region of equilibrium points in a fixed time for any initial states’ values. Then, a sufficient condition for it is given and proven. Though SFTS is similar to “practical fixed-time stability” (PFTS), they are not the same, and the sufficient condition for SFTS is much clearer and simpler than PFTS. Next, a sub-fixed-time controller is proposed for a class of second order system. The stability analyses are given in the case without disturbance and with disturbance, respectively. Finally, to illustrate the robustness of the proposed sub-fixed-time controller to different initial conditions, 100 numerical simulations are conducted for 100 initial states’ values.

Author(s):  
Guo Jianguo ◽  
Yang Shengjiang

A fixed-time sliding mode control (FTSMC) method is proposed for a second-order system with mismatched uncertainties in this paper. A new sliding mode, which is insensitive to the mismatched disturbance, is present to eliminate the effect of mismatched uncertainties by adopting the differentiable nonlinear function, and to obtain the fixed time stability independent of initial conditions by using the fraction-order function. In order to improve the performance of control system, the extended disturbance-observer-based fixed-time sliding mode control (EDO-FTSMC) approach is investigated to obtain the fixed-time stability subject to the mismatched uncertainties. Finally, the performance of the proposed control method is illustrated to compare other control approaches with numerical simulation results and application examples.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Caoyuan Ma ◽  
Wenbei Wu ◽  
Zhijie Li ◽  
Yuzhou Cheng ◽  
Faxin Wang

In this paper, the novel adaptive fixed-time stability control for chaotic oscillation in second order power system is proposed. The settling time of fixed-time control can be adjusted to the desired value without knowing the initial condition, while the finite time control depends on that. Then, we develop a parameter identification method of fixed-time depending on synchronous observer with adaptive law of parameters, which can guarantee these uncertain parameters to be identified effectively. Finally, some numerical results demonstrate the effectiveness and practicability of the scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Caoyuan Ma ◽  
Chuangzhen Liu ◽  
Xuezi Zhang ◽  
Yongzheng Sun ◽  
Wenbei Wu ◽  
...  

This paper studies the problem of fixed-time stability of hydraulic turbine governing system with the elastic water hammer nonlinear model. To control and improve the quality of hydraulic turbine governing system, a new fixed-time control strategy is proposed, which can stabilize the water turbine governing system within a fixed time. Compared with the finite-time control strategy where the convergence rate depends on the initial state, the settling time of the fixed-time control scheme can be adjusted to the required value regardless of the initial conditions. Finally, we numerically show that the fixed-time control is more effective than and superior to the finite-time control.


2018 ◽  
Vol 23 (6) ◽  
pp. 904-920 ◽  
Author(s):  
Jingting Hu ◽  
Guixia Sui ◽  
Xiaoxiao Lv ◽  
Xiaodi Li

This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Ndolane Sene ◽  
Ameth Ndiaye

In this paper, we consider a class of fractional-order systems described by the Caputo derivative. The behaviors of the dynamics of this particular class of fractional-order systems will be proposed and experienced by a numerical scheme to obtain the phase portraits. Before that, we will provide the conditions under which the considered fractional-order system’s solution exists and is unique. The fractional-order impact will be analyzed, and the advantages of the fractional-order derivatives in modeling chaotic systems will be discussed. How the parameters of the model influence the considered fractional-order system will be studied using the Lyapunov exponents. The topological changes of the systems and the detection of the chaotic and hyperchaotic behaviors at the assumed initial conditions and the considered fractional-order systems will also be investigated using the Lyapunov exponents. The investigations related to the Lyapunov exponents in the context of the fractional-order derivative will be the main novelty of this paper. The stability analysis of the model’s equilibrium points has been focused in terms of the Matignon criterion.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Maoxing Liu ◽  
Jie Wu ◽  
Yong-zheng Sun

We firstly investigate the fixed-time stability analysis of uncertain permanent magnet synchronous motors with novel control. Compared with finite-time stability where the convergence rate relies on the initial permanent magnet synchronous motors state, the settling time of fixed-time stability can be adjusted to desired values regardless of initial conditions. Novel adaptive stability control strategy for the permanent magnet synchronous motors is proposed, with which we can stabilize permanent magnet synchronous motors within fixed time based on the Lyapunov stability theory. Finally, some simulation and comparison results are given to illustrate the validity of the theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


2008 ◽  
Vol 2008 ◽  
pp. 1-12 ◽  
Author(s):  
Ibrahim Yalcinkaya

A sufficient condition is obtained for the global asymptotic stability of the following system of difference equations where the parameter and the initial values (for .


2016 ◽  
Vol 26 (13) ◽  
pp. 1650222 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
A. Elsonbaty ◽  
A. A. Elsadany ◽  
A. E. Matouk

This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system’s equilibrium points are discussed using fractional Routh–Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.


Author(s):  
Meiying Ou ◽  
Haibin Sun ◽  
Zhenxing Zhang ◽  
Lingchun Li

This paper investigates the fixed-time trajectory tracking control for a group of nonholonomic mobile robots, where the desired trajectory is generated by a virtual leader, the leader’s information is available to only a subset of the followers, and the followers are assumed to have only local interaction. According to fixed-time control theory and adding a power integrator technique, distributed fixed-time tracking controllers are developed for each robot such that all states of each robot can reach the desired value in a fixed time. Moreover, the settling time is independent of the system initial conditions and only determined by the controller parameters. Simulation results illustrate and verify the effectiveness of the proposed schemes.


Sign in / Sign up

Export Citation Format

Share Document