scholarly journals Local drags of the completion string with packers in horizontal wells

2020 ◽  
pp. 014459872096410
Author(s):  
Qimin Liang ◽  
Bairu Xia ◽  
Baolin Liu ◽  
Baokui Gao

The multistage stimulation technique and horizontal wells are increasingly being utilized to improve oil and gas recovery. However, the sticking that occurs due to large drag during the completion string with packers tripping into the horizontal section, resulting in an abandoned well and huge economic losses. Based on a classical drag model, this paper illustrates how local drags affect the overall stress of the completion string by a case study. Mechanical models are also presented for analyzing the local drag of packers in horizontal sections considering the effects of microsteps or slots, borehole curvatures, and caliper variation respectively. The results confirmed that the local contact force is affected by centralizers, and local drags can be magnified during their upward transmission process. It is revealed that the slopes of microsteps or slots affect more on local drag of packers than the effects of microsteps’s height and slots’ depth; Moreover, the local drag of the packer was found increases with the increase of the borehole curvature, but less affected by the caliper variation; As to the effect of cuttings on the local drag of packers, it is affected by cuttings size and cuttings amount and cannot be quantitatively analyzed. This research could be utilized as a theoretical reference for estimating the sticking risks of the completion string and conditioning the horizontal open hole.

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 657 ◽  
Author(s):  
Qimin Liang ◽  
Bairu Xia ◽  
Baolin Liu ◽  
Zhen Nie ◽  
Baokui Gao

The multistage stimulation technology of horizontal wells has brought huge benefits to the development of oil and gas fields. However, the completion string with packers often encounters stuck due to the large drag in the horizontal section, causing huge economic losses. The local drag of the completion string with packers in the horizontal section is very complicated, and it has not been fully understood by theoretical calculations. A local drag experiment is designed to simulate the influence of microsteps and cuttings on the local drag of the completion string with packers in the inclined and horizontal sections. An obvious increase of the local drag of the packer is found at microsteps of the horizontal section, and the local drag is greatly affected by the amount of sand. In addition, the string with packers will vibrate during the tripping process in the deviated section, and the local drag is different when different amounts of sand are in the hole, but the change law is similar. The experimental results show that the friction coefficients of the packers with different materials in the horizontal section vary greatly, resulting in different local drags. It indicates that the local drag of the completion string not only depends on the microsteps and sand quantity in the wellbore, but also on the material difference of the packers. Only if microsteps and cuttings are removed can the completion string be tripped into horizontal wells smoothly.


2021 ◽  
Vol 40 (11) ◽  
pp. 805-814
Author(s):  
Michał Kępiński ◽  
Pramit Basu ◽  
David Wiprut ◽  
Marek Koprianiuk

This paper presents a shale gas field geomechanics case study in the Peri-Baltic Syneclise (northern Poland). Polish Oil and Gas Company drilled a vertical well, W-1, and stimulated the Silurian target. Next, a horizontal well, W-2H, drilled the Ordovician target and partially collapsed. The remaining interval was stimulated, and microseismic monitoring was performed. A second horizontal well, W-3H, was drilled at the same azimuth as W-2H, but the well collapsed in the upper horizontal section (Silurian). A geomechanical earth model was constructed that matches the drilling experiences and well failure observations found in wells W-1, W-2H, and W-3H. The field was found to be in a strike-slip faulting stress regime, heavily fractured, with weak bedding contributing to the observed drilling problems. An analysis of safe mud weights, optimal casing setting depths, and optimal drilling directions was carried out for a planned well, W-4H. Specific recommendations are made to further enhance the model in any future studies. These recommendations include data acquisition and best practices for the planned well.


2009 ◽  
Author(s):  
Carlos Alberto Franco ◽  
J. Ricardo Solares ◽  
Hamad Mohammed Al-Marri ◽  
Francisco Orlando Garzon ◽  
Khalid Saeed Asiri ◽  
...  

2021 ◽  
Author(s):  
Aleksander Valerievich Miroshnichenko ◽  
Valery Alekseevich Korotovskikh ◽  
Timur Ravilevich Musabirov ◽  
Aleksei Eduardovich Fedorov ◽  
Khakim Khalilovich Suleimanov

Abstract The deterioration of the reservoir properties of potential oil and gas bearing areas on mature and green fields, as well as the increase in the volume of hard-to-recover reserves on low-permeable reservoirs set us new challenges in searching and using effective development technologies to maintain and even increase the oil production levels. Based on successful international experience, Russian oil and gas companies use horizontal wells (HW) with multi-stage hydraulic fracturing (MSHF) for the cost-effective development of low-permeable reservoirs. Thus, since the first pilot works of drilling technologies and completion of HW with MSHF in 2011, at the beginning of 2020, over 1,200 HW with MSHF were drilled and came on stream at the fields of LLC RN-Yuganskneftegaz, about half of which are at the exploitation play AS10-12 of the northern license territory (NLT) of the Priobskoye field. In searching the best technologies and engineering solutions, the company tested different lengths of horizontal section of HW, the number of hydraulic fracturing (HF) stages and distances between hydraulic fracturing ports, as well as different specific mass of the proppant per frac port. Recently, there has been a tendency in design solutions to increase the length of the HWs and the number of hydraulic fractures with a decreasing distance between the frac ports and a decreasing specific mass of the proppant per frac port. This work studies the actual and theoretical efficiency of HW with MSHF of various designs (different lengths of horizontal section of HW and the number of HF stages) and to assess the viability of increasing the technological complexity, as well as to analyze the actual impact of loading the proppant mass per port on performing HW with MSHF. The study is based on the results of the analysis of the factual experience accumulated over the entire history of the development of the exploitation play AS10-12 of the NLT of the Priobskoye field of the Rosneft Company. In studying the viability of increasing the technological complexity, especially, increasing the length of horizontal section of HW, increasing the number of HF stages, and reducing the distance between the frac ports: we discovered the typical methodological errors made in analyzing the efficiency of wells of various designs; we developed the methodology for analysis of the actual multiplicity of indicators of wells of various designs, in particular, HW with MSHF relative to deviated wells (DW) with HF; we carried out the statistical analysis of the actual values of the multiplicity of performance indicators and completion parameters of HW with MSHF of various designs relative to the surrounding DW with HF of the exploitation play AS10-12 of the NLT of the Priobskoye field; we performed the theoretical calculation of the multiplicity of the productivity coefficient for the HW with MSHF of various designs relative to DW with HF for the standard development system of the exploitation play AS10-12 of the NLT of the Priobskoye field; we compared the actual and theoretical results. The paper also presents the results of studying the actual effect of changes of proppant's mass per port on performance indicators of HW with MSHF of the same design and with an increase in the number of fractures of the hydraulic fracturing without changing the length of horizontal section of HW. As for performance indicators, being the basis for estimating the efficiency of HW with MSHF of various designs, we used the productivity index per meter of the effective reservoir thickness and the cumulative fluid production per meter of the effective reservoir thickness per a certain period of operation. And as the completion parameters, we used the length of the horizontal section of HW, the number of HF stages, the distance between the frac ports, and the specific mass of the proppant per meter of the effective reservoir thickness per frac port. The results of this work are the determining vector of development for future design decisions in improving the efficiency of HW with MSHF.


2014 ◽  
Author(s):  
Qu Hai ◽  
Zhao Xiaoxiang

Abstract Multistage hydrajet-fracturing combines hydrajet perforating and hydraulic fracturing to perform separate, sequential fracture stimulations without mechanical packers. It can reasonably place fractures according to geological condition, and then accurately treat them. Without packer, it uses dynamic isolation to seal flow into target, saving operating time and lowering operating risk. Therefore, the process not only especially adapts to stimulate open hole, but effectively treats slotted liner completion. The mechanisms and fluid dynamics of multistage hydrajet-fracturing technology are investigated with numerical simulation and laboratory experiments. More than 70 oil and gas wells have been successfully treated using this technology since 2009. On average, three hydraulic fractures with total 120m3 proppants were placed at strategically selected locations in well, typically several hundred meters apart without sealing equipments. The deepest treatment in oil well 203-19 in Zhongyuan oilfield, using tubing string, was 3692m, and surface pressure reached 88MPa. Significant stimulation results were achieved in these wells. For example, production increased by more than 50 times after stimulation to the gas well XS311H in Sichuan oilfield. The oil well 92-2 in the Zhongyuan oilfield, which had been a dead horizontal well, has been revived using this technology with average oil production of 15 tons per day. Multistage hydrajet-fracturing stimulation shows promising feature for horizontal, vertical, deviated, and even multilateral wells.


2020 ◽  
Vol 24 (1) ◽  
pp. 35-46
Author(s):  
Bhaskar Sinha ◽  
Supriyo Roy ◽  
Manju Bhagat

Push for sustainability is evident in areas such as energy generation where the focus has been on finding new deposits to outpace drawdown on existing reserves. Gas flaring is employed by oil and gas industries to burn-off associated gasses from refineries, hydrocarbon processing plants or oil and gas reserve wells. It is one of the most taxing energies and environmental problems challenging the world today. Generally, safety flaring was dubbed as the saviour of process plants and mostly covers for sudden or unplanned plant trips. It is an opportunity to cut greenhouse gases (GHGs) from oil and gas processing plants through flare gas recovery (FGR) process. Oil and gas plants can employ diverse FGR procedures to offset key concerns about the environmental bearing of GHGs emanation most of which necessitating novel apparatus and extraordinary outlay of design and construction. In this study, apart from economic aspects, a real-life case study is extensively analysed to highlight exploration and adoption of optimizing FGR that may be beneficial if flare gas can be recovered, instead of burning. The output of the study may have a significant impact for refineries towards both economic and sustainability towards greening. In a nutshell, this study highlights the efficacy of reducing ‘flare gas system’ towards environment-friendly ‘greening’ aspect as the core of designing.


2005 ◽  
Vol 127 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Y. Ding ◽  
G. Renard

It is well recognized that near-wellbore formation damage can dramatically reduce well productivities, especially for open hole completed horizontal wells. The economic impact of poor productivity of these wells has pushed toward significant efforts in recent years to study laboratory testing techniques and numerical modeling methods for predicting and controlling drilling-induced formation damage. This paper presents an integrated approach, combining a near-wellbore modeling with laboratory experiments for data acquisition as input for the model, to evaluate the performance of oil and gas wells after drilling-induced formation damage.


2021 ◽  
Author(s):  
Youngbin Shan ◽  
Hongjun Lu ◽  
Qingbo Jiang ◽  
Zhijun Li ◽  
Jianpeng Xue ◽  
...  

Abstract The objective of the paper is to introduce a new technology which secures long horizontal casing deployment by a reliable casing flotation technology. It is common nowadays to drill a slim hole and extends to long horizontal extension to pay zones in condensate and shale oil and gas reservoir. To assure a successful casing deployment into the horizontal section, a flotation collar is often installed to float the casing in horizontal to mitigate the friction and Torque & Drag. However, slim casing may encounter difficulty in circulation and subsequent cementing even after the collar is broken. A new proprietary technique proposed in this paper solved above contingencies and secured 100% success in casing deployment, This technique secures smoothly circulation and cementing by flotating air in horizontal casing interval and purging air out of hole to overcome Spring Effect before circulation and cementing. Often, the flotation collar is made of proprietary material that can break or explodes under certain hydraulic pressure. After breaking, the whole collar becomes a portion of casing with exact the same ID of casing or a very small difference that does not have any negative effect to subsequent Plug & Perf, frac, tools running through and fluid movement. For long horizontal length of small open hole and casing sizes, casing deployment may be difficult if the Torque & Drag and friction through the low sides can not be mitigated. This paper proposes a new technique to fill air full of horizontal interval along inside the casing and ensure a sufficient of air purging to overcome Spring Effect before circulation and cementing. So far twelve (12) wells have been successfully completed including Asian longest horizontal gas well with 7,388.18m measured depth and 4,118.18m horizontal length. All jobs are 100% successful and there is no difficulty in mud circulation and cementing. Even for the longest 4,118.18m horizontal length casing deployment, the hook weight on surface when casing reached the total depth still remained 20 MT. Before this technique was applied, operators were unable to deploy 4 ½" casing through a 6" bit hole beyond 1500m horizontal length. Most often the hook weight at surface were zero when casing extended to almost 1500m in horizontal length. This new technique brings a great value to operators to complete longer horizontal well to yield more production with less investment.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2414 ◽  
Author(s):  
Xin Chang ◽  
Jun Zhou ◽  
Yintong Guo ◽  
Shiming He ◽  
Lei Wang ◽  
...  

Horizontal wells are increasingly being utilized in the exploration and development of oil and gas resources. However, the high temperature that occurs during drilling processes leads to a number of problems, such as the deterioration of drilling fluid properties and borehole instability. Therefore, the insight into heat transfer behaviors in horizontal wells is certainly advantageous. This study presents an integrated numerical model for predicting the temperature distribution during horizontal wells drilling considering the effects of drill pipe rotations, and hydraulic (i.e., circulating pressure losses) and mechanical frictions. A full implicit finite difference method was applied to solve this model. The results revealed that the mechanical frictions affect more on wellbore temperature variation than the effects of heat transfer intensification and circulating pressure losses; Moreover, the drilling fluid temperature was found higher than the stratum temperature at horizontal section, the temperature difference at the bottom hole reached up to 16 °C if pressure drops, heat transfer strengthened by rotations and mechanical frictions were all taken into account. This research could be utilized as a theoretical reference for predicting temperature distributions and estimating risks in horizontal wells drilling.


Sign in / Sign up

Export Citation Format

Share Document