Elevational Spatial Compounding

1994 ◽  
Vol 16 (3) ◽  
pp. 176-189 ◽  
Author(s):  
Pai-Chi Li ◽  
M. O'Donnell

Spatial compounding has long been explored to reduce coherent speckle noise in medical ultrasound. By laterally translating a one-dimensional array, partially correlated measurements made at different look directions can be obtained and incoherently averaged. The lateral resolution, however, is limited by the sub-array length used for each independent measurement. To reduce speckle contrast without compromising lateral resolution, a new spatial compounding technique using two-dimensional, anisotropic arrays is proposed. This technique obtains partially correlated measurements by steering the image plane elevationally with small inclinations. Incoherent averaging is then performed by adding image magnitudes. Therefore, contrast resolution is improved only at the price of a slightly wider elevational beam. Note that although anisotropic arrays have limited steering capability in elevation, grating lobes are not considered influential since only small inclinations are needed between measurements. Simulations have been performed to show both the change in spatial resolution and the improvement in contrast resolution. Results indicated minimal increase in the correlation length both laterally and axially. It was also shown that detectability can be significantly enhanced by increasing the number of measurements or increasing the differential inclination between measurements. This technique is therefore effective for reducing speckle noise while maintaining in-plane spatial resolution. Furthermore, it demonstrates a new application of two-dimensional anisotropic arrays in spite of their limited elevational steering capability.

1985 ◽  
Vol 7 (3) ◽  
pp. 215-224 ◽  
Author(s):  
Seung-Woo Lee ◽  
Song-Bai Park

An improved scan conversion algorithm for ultrasound compound scanning is proposed. In this algorithm, the input data in the spatial domain is sampled by the concentric square raster sampling (CSRS) method, and the display pixel data are filled by one-dimensional linear interpolation. The reconstruction error of the proposed algorithm is much smaller than that of other algorithms, because only one-dimensional, rather than two-dimensional, interpolation is involved. This algorithm greatly simplifies implementation of a real-time digital scan converter (DSC) for spatial compounding of ultrasound images.


1988 ◽  
Vol 143 ◽  
Author(s):  
Mark L. Rivers ◽  
Stephen R. Sutton ◽  
Barry M. Gordon

AbstractSynchrotron x-ray fluorescence experiments were performed using a prototype undulator for the Advanced Photon Source installed on the CESR storage ring at Cornell University during a run in May, 1988. Fluorescence spectra were collected from a number of standard references and unknowns. Thick target minimum detectable limits (MDL) were about a factor of two higher than those obtained using white bending magnet radiation at the NSLS. The higher MDLs could be due to lower polarization and/or imperfect alignment of the Si(Li) detector. Thin target MDLs were about 10 times lower than the NSLS since the undulator produced a usable spot size which was also 10 times smaller. Several one dimensional multi-elemental scans and two dimensional images were made with 10 μm resolution and 30 ppm MDL. These experiments demonstrate that undulators on the proposed Advanced Photon Source will be ideal for a trace element x-ray fluorescence microprobe with excellent elemental sensitivity and spatial resolution.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1982 ◽  
Vol 14 (1-2) ◽  
pp. 241-261 ◽  
Author(s):  
P A Krenkel ◽  
R H French

The state-of-the-art of surface water impoundment modeling is examined from the viewpoints of both hydrodynamics and water quality. In the area of hydrodynamics current one dimensional integral energy and two dimensional models are discussed. In the area of water quality, the formulations used for various parameters are presented with a range of values for the associated rate coefficients.


2010 ◽  
Vol 7 ◽  
pp. 90-97
Author(s):  
M.N. Galimzianov ◽  
I.A. Chiglintsev ◽  
U.O. Agisheva ◽  
V.A. Buzina

Formation of gas hydrates under shock wave impact on bubble media (two-dimensional case) The dynamics of plane one-dimensional shock waves applied to the available experimental data for the water–freon media is studied on the base of the theoretical model of the bubble liquid improved with taking into account possible hydrate formation. The scheme of accounting of the bubble crushing in a shock wave that is one of the main factors in the hydrate formation intensification with increasing shock wave amplitude is proposed.


2016 ◽  
Vol 11 (1) ◽  
pp. 119-126 ◽  
Author(s):  
A.A. Aganin ◽  
N.A. Khismatullina

Numerical investigation of efficiency of UNO- and TVD-modifications of the Godunov method of the second order accuracy for computation of linear waves in an elastic body in comparison with the classical Godunov method is carried out. To this end, one-dimensional cylindrical Riemann problems are considered. It is shown that the both modifications are considerably more accurate in describing radially converging as well as diverging longitudinal and shear waves and contact discontinuities both in one- and two-dimensional problem statements. At that the UNO-modification is more preferable than the TVD-modification because exact implementation of the TVD property in the TVD-modification is reached at the expense of “cutting” solution extrema.


2012 ◽  
Vol 9 (1) ◽  
pp. 47-52
Author(s):  
R.Kh. Bolotnova ◽  
V.A. Buzina

The two-dimensional and two-phase model of the gas-liquid mixture is constructed. The validity of numerical model realization is justified by using a comparative analysis of test problems solution with one-dimensional calculations. The regularities of gas-saturated liquid outflow from axisymmetric vessels for different geometries are established.


Author(s):  
Xintian Liu ◽  
Yang Qu ◽  
Xiaobing Yang ◽  
Yongfeng Shen

Background:: In the process of high-speed driving, the wheel hub is constantly subjected to the impact load from the ground. Therefore, it is important to estimate the fatigue life of the hub in the design and production process. Objective:: This paper introduces a method to study the fatigue life of car hub based on the road load collected from test site. Methods:: Based on interval analysis, the distribution characteristics of load spectrum are analyzed. The fatigue life estimation of one - dimensional and two - dimensional load spectra is compared by compiling load spectra. Results:: According to the S-N curve cluster and the one-dimensional program load spectrum, the estimated range fatigue life of the hub is 397,100 km to 529,700 km. For unsymmetrical cyclic loading, each level means and amplitude of load were obtained through the Goodman fatigue empirical formula, and then according to S-N curve clusters in the upper and lower curves and two-dimensional program load spectrum, estimates the fatigue life of wheel hub of the interval is 329900 km to 435200 km, than one-dimensional load spectrum fatigue life was reduced by 16.9% - 17.8%. Conclusion:: This paper lays a foundation for the prediction of fatigue life and the bench test of fatigue durability of auto parts subjected to complex and variable random loads. At the same time, the research method can also be used to estimate the fatigue life of other bearing parts or high-speed moving parts and assemblies.


Sign in / Sign up

Export Citation Format

Share Document