Developmental Models and Early Experience

1986 ◽  
Vol 9 (2) ◽  
pp. 175-190 ◽  
Author(s):  
Kevin MacDonald

This paper attempts to describe links between the transactional or dialectical and the mechanistic models of development and to provide a rationale for why both types are useful. Examples of data sets, deriving principally from the early experience literature, are provided which conform to both, and it is concluded that the applicability of the model for describing behavioral development is strongly influenced by where the individual stands on three empirical dimensions: (1) the relative power of the environments that the individual is exposed to; (2) the plasticity of the individual's behavior; and (3) the deviation of the individual from developmental norms. These factors crucially affect the degree of reciprocity found in organism-environment interactions, and the results suggest that differences between developmental models are reconcilable.

2019 ◽  
Author(s):  
Ulrike Niemeier ◽  
Claudia Timmreck ◽  
Kirstin Krüger

Abstract. In 1963 a series of eruptions of Mt. Agung, Indonesia, resulted in the 3rd largest eruption of the 20th century and claimed about 1900 lives. Two eruptions of this series injected SO2 into the stratosphere, a requirement to get a long lasting stratospheric sulfate layer. The first eruption on March 17th injected 4.7 Tg SO2 into the stratosphere, the second eruption 2.3 Tg SO2 on May, 16th. In recent volcanic emission data sets these eruption phases are merged together to one large eruption phase for Mt. Agung in March 1963 with an injection rate of 7 Tg SO2. The injected sulfur forms a sulfate layer in the stratosphere. The evolution of sulfur is non-linear and depends on the injection rate and aerosol background conditions. We performed ensembles of two model experiments, one with a single and a second one with two eruptions. The two smaller eruptions result in a lower burden, smaller particles and 0.1 to 0.3 Wm−2 (10–20 %) lower radiative forcing in monthly mean global average compared to the individual eruption experiment. The differences are the consequence of slightly stronger meridional transport due to different seasons of the eruptions, lower injection height of the second eruption and the resulting different aerosol evolution. The differences between the two experiments are significant but smaller than the variance of the individual ensemble means. Overall, the evolution of the volcanic clouds is different in case of two eruptions than with a single eruption only. We conclude that there is no justification to use one eruption only and both climatic eruptions should be taken into account in future emission datasets.


2021 ◽  
pp. M56-2021-22
Author(s):  
Mirko Scheinert ◽  
Olga Engels ◽  
Ernst J. O. Schrama ◽  
Wouter van der Wal ◽  
Martin Horwath

AbstractGeodynamic processes in Antarctica such as glacial isostatic adjustment (GIA) and post-seismic deformation are measured by geodetic observations such as GNSS and satellite gravimetry. GNSS measurements have been comprising continuous measurements as well as episodic measurements since the mid-1990s. The estimated velocities typically reach an accuracy of 1 mm/a for horizontal and 2 mm/a for vertical velocities. However, the elastic deformation due to present-day ice-load change needs to be considered accordingly.Space gravimetry derives mass changes from small variations in the inter-satellite distance of a pair of satellites, starting with the GRACE satellite mission in 2002 and continuing with the GRACE-FO mission launched in 2018. The spatial resolution of the measurements is low (about 300 km) but the measurement error is homogeneous across Antarctica. The estimated trends contain signals from ice mass change, local and global GIA signal. To combine the strengths of the individual data sets statistical combinations of GNSS, GRACE and satellite altimetry data have been developed. These combinations rely on realistic error estimates and assumptions of snow density. Nevertheless, they capture signal that is missing from geodynamic forward models such as the large uplift in the Amundsen Sea sector due to low-viscous response to century-scale ice-mass changes.


Author(s):  
Sean Moran ◽  
Bruce MacFadden ◽  
Michelle Barboza

Over the past several decades, thousands of stable isotope analyses (δ13C, δ18O) published in the peer-reviewed literature have advanced understanding of ecology and evolution of fossil mammals in Deep Time. These analyses typically have come from sampling vouchered museum specimens. However, the individual stable isotope data are typically disconnected from the vouchered specimens, and there likewise is no central repository for this information. This paper describes the status, potential, and value of the integration of stable isotope data in museum fossil collections. A pilot study in the Vertebrate Paleontology collection at the Florida Museum of Natural History has repatriated within Specify more than 1,000 legacy stable isotope data (mined from the literature) with the vouchered specimens by using ancillary non Darwin Core (DwC) data fields. As this database grows, we hope to both: validate previous studies that were done using smaller data sets; and ask new questions of the data that can only be addressed with larger, aggregated data sets. validate previous studies that were done using smaller data sets; and ask new questions of the data that can only be addressed with larger, aggregated data sets. Additionally, we envision that as the community gains a better understanding of the importance of these kinds of ancillary data to add value to vouchered museum specimens, then workflows, data fields, and protocols can be standardized.


2019 ◽  
Vol 622 ◽  
pp. A172 ◽  
Author(s):  
F. Murgas ◽  
G. Chen ◽  
E. Pallé ◽  
L. Nortmann ◽  
G. Nowak

Context. Rayleigh scattering in a hydrogen-dominated exoplanet atmosphere can be detected using ground- or space-based telescopes. However, stellar activity in the form of spots can mimic Rayleigh scattering in the observed transmission spectrum. Quantifying this phenomena is key to our correct interpretation of exoplanet atmospheric properties. Aims. We use the ten-meter Gran Telescopio Canarias (GTC) telescope to carry out a ground-based transmission spectra survey of extrasolar planets to characterize their atmospheres. In this paper we investigate the exoplanet HAT-P-11b, a Neptune-sized planet orbiting an active K-type star. Methods. We obtained long-slit optical spectroscopy of two transits of HAT-P-11b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) on August 30, 2016 and September 25, 2017. We integrated the spectrum of HAT-P-11 and one reference star in several spectroscopic channels across the λ ~ 400–785 nm region, creating numerous light curves of the transits. We fit analytic transit curves to the data taking into account the systematic effects and red noise present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp∕Rs) across wavelength. Results. By fitting both transits together, we find a slope in the transmission spectrum showing an increase of the planetary radius towards blue wavelengths. Closer inspection of the transmission spectrum of the individual data sets reveals that the first transit presents this slope while the transmission spectrum of the second data set is flat. Additionally, we detect hints of Na absorption on the first night, but not on the second. We conclude that the transmission spectrum slope and Na absorption excess found in the first transit observation are caused by unocculted stellar spots. Modeling the contribution of unocculted spots to reproduce the results of the first night we find a spot filling factor of δ = 0.62−0.17+0.20 and a spot-to-photosphere temperature difference of ΔT = 429−299+184 K.


2018 ◽  
Vol 6 (4_suppl2) ◽  
pp. 2325967118S0003
Author(s):  
Cornelia Merz ◽  
Andre Steinert ◽  
Wiliam Kurtz ◽  
Franz Xaver Köck ◽  
Johannes Beckmann

Based on a large quantity of CT data, variations in distal femoral geometry was examined and evaluated for TKA. A retrospective study was performed on 24,042 data sets generated during the process of designing individual knee implants. Following parameters were recorded for the distal femur: Femoral absolute anterior-posterior (AP) and medial-lateral (ML) extent, lateral and medial condyle and trochlea size, distal condylar offset (DCO) between lateral and medial condyle, and the difference between medial and lateral posterior condylar offset (PCO) measured in AP direction. Variable patient geometry was found with analysis of the AP and ML extent. Approximately one-third of the patients would experience size conflicts of +/- 3 mm with standard arthroplasty systems. 62% of the knees had a DCO> 1 mm. 83% of the distal femur had a mediolateral difference in PCO> 2 mm, which corresponds to about 3° external rotation and does not correlate with the femoral size. There is a distinct variability of femoral AP and ML extent as well as offsets / asymmetries. Medial and lateral PCOs are different and do not correlate with femoral size. This first results in mismatches between size of implant and individual knee anatomy and secondly in possible softtissue release and different femoral external rotations to adapt systems with fixed distal geometry to the individual situation.


Author(s):  
Anto Arockia Rosaline R. ◽  
Lalitha R. ◽  
Hariharan G. ◽  
Lokesh N.

Purpose Because of the outbreak of Covid 19, the entire world is thinking of new strategies, preventive measures to safeguard the human life from the widespread of the pandemic. The areas where people are affected are marked as containment zones and people are not allowed to exit out of those areas. Similarly, new people are not allowed to enter inside those areas. Hence, the purpose of this paper is to propose a methodology to track the Covid zones, to enhance and tighten the security measures. A geo-fence is created for the containment zone. The person who enters or exits out of that particular zone will be monitored and alert message will be sent to that person’s mobile. Design/methodology/approach After tracking the location of a suspicious individual, the geo-fenced layer is mapped in the area and then the virtual perimeter is used for further trapping process. This geo-fenced layer can be viewed by the citizens as soon as it is updated by the Covid monitoring team. The geo-fencing is a concept of building a virtual perimeter area. This virtual perimeter monitoring system helps in monitoring the containment zones effectively. It reduces operational costs by using an automated system based on wireless infrastructure. It also alerts the authorities immediately to catch the violators. Thus, it helps to speed up the process of inspecting the containment zones and monitoring the individuals who violate the rules given by government. Findings The proposed methodologies will be an effective way to track the Covid’s communal spread. But the workflow of the system demands the required data sets and permission in legal manner to set up the environment that maintains the constitutional law and order in practice. The application developed was a prototype to display how it works if the required data sets are provided by the government. There are several tracking models that are released across the world such as Aarogya setu (India), Trace together (Singapore) and Hagmen (Israel). All these models are based on Bluetooth proximity identification; though Bluetooth proximity identification is helpful for high range in a short distance, the privacy concern is debatable one. Using modern technology, it is so easy to crack the individual gadgets and with Bluetooth enabling it makes things even worse. Thus, it is important to maintain the tracking a safer and secure one, and another issue with those Bluetooth-based applications is that tracking can be done only if the user enabled the Bluetooth option, if not the entire functioning would become a mess. The proposed methodology of tracking without Bluetooth will ensure data security also. Originality/value This was developed as a project by our third-year students of the Department of Information Technology of our college.


2020 ◽  
Vol 32 (8) ◽  
pp. 993-1001 ◽  
Author(s):  
Dilip V. Jeste ◽  
Sarah A. Graham ◽  
Tanya T. Nguyen ◽  
Colin A. Depp ◽  
Ellen E. Lee ◽  
...  

ABSTRACTBackground:The ultimate goal of artificial intelligence (AI) is to develop technologies that are best able to serve humanity. This will require advancements that go beyond the basic components of general intelligence. The term “intelligence” does not best represent the technological needs of advancing society, because it is “wisdom”, rather than intelligence, that is associated with greater well-being, happiness, health, and perhaps even longevity of the individual and the society. Thus, the future need in technology is for artificial wisdom (AW).Methods:We examine the constructs of human intelligence and human wisdom in terms of their basic components, neurobiology, and relationship to aging, based on published empirical literature. We review the development of AI as inspired and driven by the model of human intelligence, and consider possible governing principles for AW that would enable humans to develop computers which can operationally utilize wise principles and result in wise acts. We review relevant examples of current efforts to develop such wise technologies.Results:AW systems will be based on developmental models of the neurobiology of human wisdom. These AW systems need to be able to a) learn from experience and self-correct; b) exhibit compassionate, unbiased, and ethical behaviors; and c) discern human emotions and help the human users to regulate their emotions and make wise decisions.Conclusions:A close collaboration among computer scientists, neuroscientists, mental health experts, and ethicists is necessary for developing AW technologies, which will emulate the qualities of wise humans and thus serve the greatest benefit to humanity. Just as human intelligence and AI have helped further the understanding and usefulness of each other, human wisdom and AW can aid in promoting each other’s growth


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5262
Author(s):  
Meizhu Li ◽  
Shaoguang Huang ◽  
Jasper De Bock ◽  
Gert de Cooman ◽  
Aleksandra Pižurica

Supervised hyperspectral image (HSI) classification relies on accurate label information. However, it is not always possible to collect perfectly accurate labels for training samples. This motivates the development of classifiers that are sufficiently robust to some reasonable amounts of errors in data labels. Despite the growing importance of this aspect, it has not been sufficiently studied in the literature yet. In this paper, we analyze the effect of erroneous sample labels on probability distributions of the principal components of HSIs, and provide in this way a statistical analysis of the resulting uncertainty in classifiers. Building on the theory of imprecise probabilities, we develop a novel robust dynamic classifier selection (R-DCS) model for data classification with erroneous labels. Particularly, spectral and spatial features are extracted from HSIs to construct two individual classifiers for the dynamic selection, respectively. The proposed R-DCS model is based on the robustness of the classifiers’ predictions: the extent to which a classifier can be altered without changing its prediction. We provide three possible selection strategies for the proposed model with different computational complexities and apply them on three benchmark data sets. Experimental results demonstrate that the proposed model outperforms the individual classifiers it selects from and is more robust to errors in labels compared to widely adopted approaches.


Sign in / Sign up

Export Citation Format

Share Document