scholarly journals Modeling the Measurements of Cochlear Microcirculation and Hearing Function after Loud Noise

2011 ◽  
Vol 145 (3) ◽  
pp. 463-469 ◽  
Author(s):  
Warangkana Arpornchayanon ◽  
Martin Canis ◽  
Markus Suckfuell ◽  
Fritz Ihler ◽  
Bernhard Olzowy ◽  
...  
Keyword(s):  
2017 ◽  
Vol 2 (15) ◽  
pp. 32-41
Author(s):  
Jennine Harvey ◽  
Scott Seeman ◽  
Deborah von Hapsburg

The field of Cognitive Hearing Science examines the relationship between cognitive, linguistic, and hearing functions. Although these areas are of particular importance to speech-language pathology, few studies have investigated applications of cognitive hearing science to clinical practice. The purpose of this review article is to (1) explore and present a summary of cognitive hearing science techniques for dual-task and hearing-in-noise procedures and implications to speech-language pathology, and (2) provide a clinical guide for speech-language pathology in adult multitasking intervention with noise. It is well understood that areas of cognitive skill and hearing function decline with age; therefore, additional understanding of the relationship of these functions is of particular importance to speech-language pathologists working with older individuals. This article meets the American Speech-Language-Hearing Association's (ASHA's) Special Interest Group (SIG) 15's mission of “research-to-practice” professional development by “promoting understanding of the effects of normal and pathological aging on cognition, language […] and hearing” (ASHA, 2017), and is intended to be of interest to the SIG 15 readership.


2013 ◽  
Vol 40 (2) ◽  
Author(s):  
Ni Ketut Susilawati ◽  
Wayan Sudana ◽  
Eka Putra Setiawan

Background: Noise pollution or noise is an unwanted sound which is disturbing to human beings.However small or soft the sound, if it is undesirable it is considered as noise. Noise induced hearingloss is a sensorineural hearing loss that is commonly encountered second to presbycusis. Purpose: Toknow the effect of traffic noise exposure on hearing impairment to the employees of the Parking DistrictCompany of the Denpasar city and to improve diagnostic detection on hearing impairment caused bynoise. Method: A cross sectional study was conducted at the Parking District Company office. Thepopulations of this study were the employees of the Parking District Company. Samples of this study were the employees who were exposed to traffic noise and control samples were an employee who was unexposed. Samples were selected by simple random sampling. Results: From 40 parking attendants,27 persons (67.5%) aged above 35 years old. The parking attendants who had been working for ten to fifteen years were 36 persons (90%) and no history using ear protection when working. Seven persons(17.5%) had referred DPOAE upon examination with increase hearing threshold on audiogram result.In this study the parking attendants who had hearing deficit induced by noise were 7 persons (17.5%)and only one person (2.5%) in control group. There was a statistically significant effect of traffic noiseto hearing function deficit (p<0.05). Conclusion: Traffic noise has effect in hearing function deficit onthe parking attendants.ORLI Vol. 40 No. 2 Tahun 2010Key words: NIHL, parking attendant, audiometry, DPOAE.


2007 ◽  
Vol 3 (1) ◽  
pp. 28-35
Author(s):  
Eun-Yeong Shin ◽  
Jin-Sook Kim ◽  
Eui-Cheol Nam ◽  
Moon-Suh Park

2013 ◽  
Author(s):  
Han Dong
Keyword(s):  

Author(s):  
Torsten Lehmann ◽  
André van Schaik

The chapter Implantable hearing interfaces describes the fundamental operation of a commonly available biohybrid system, the cochlear implant, or bionic ear. This neuro-stimulating biomedical implant is very successful in restoring hearing function to people with profound hearing loss. The fundamental operation of the biological cochlea is described and parallels are drawn between key aspects of the biological system and the biohybrid implementation: dynamic range compression, translation of sound to neural activity, and tonotopic mapping. Critical considerations are discussed for simultaneously meeting biological, surgical, and engineering restrictions in successful biohybrid systems design. Finally, challenges in present and future cochlear implants are outlined and directions of current research given.


Author(s):  
Marketa Kaucka ◽  
Bara Szarowska ◽  
Michaela Kavkova ◽  
Maria Eleni Kastriti ◽  
Polina Kameneva ◽  
...  

AbstractMelanocytes are pigmented cells residing mostly in the skin and hair follicles of vertebrates, where they contribute to colouration and protection against UV-B radiation. However, the spectrum of their functions reaches far beyond that. For instance, these pigment-producing cells are found inside the inner ear, where they contribute to the hearing function, and in the heart, where they are involved in the electrical conductivity and support the stiffness of cardiac valves. The embryonic origin of such extracutaneous melanocytes is not clear. We took advantage of lineage-tracing experiments combined with 3D visualizations and gene knockout strategies to address this long-standing question. We revealed that Schwann cell precursors are recruited from the local innervation during embryonic development and give rise to extracutaneous melanocytes in the heart, brain meninges, inner ear, and other locations. In embryos with a knockout of the EdnrB receptor, a condition imitating Waardenburg syndrome, we observed only nerve-associated melanoblasts, which failed to detach from the nerves and to enter the inner ear. Finally, we looked into the evolutionary aspects of extracutaneous melanocytes and found that pigment cells are associated mainly with nerves and blood vessels in amphibians and fish. This new knowledge of the nerve-dependent origin of extracutaneous pigment cells might be directly relevant to the formation of extracutaneous melanoma in humans.


2021 ◽  
Author(s):  
Barbara Vona ◽  
Neda Mazaheri ◽  
Sheng-Jia Lin ◽  
Lucy A. Dunbar ◽  
Reza Maroofian ◽  
...  

AbstractDeafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


Sign in / Sign up

Export Citation Format

Share Document