TGN1412: Time to Change the Paradigm for the Testing of New Pharmaceuticals

2006 ◽  
Vol 34 (2) ◽  
pp. 225-239 ◽  
Author(s):  
Nirmala Bhogal ◽  
Robert Combes

Clinical studies in human volunteers are an essential part of drug development. These studies are designed to account for possible differences between the effects of pharmaceutical products in pre-clinical studies and in humans. However, the tragic outcome of the recent Phase 1 clinical trial on TGN1412 casts considerable doubt over the relevance of this traditional drug development paradigm to the testing of therapeutic agents for human use. The role of alternatives to animal testing is considered, and a series of recommendations are made, which could ensure that clinical trials are well informed and based on the most relevant scientific information.

2015 ◽  
Vol 21 (4) ◽  
Author(s):  
Ajay Gautam

The article proposes a “virtual” biotech model for the emerging markets - termed EmergingCo - and develops a comparative financial model to argue that such a virtual biotech can deliver drug candidates from discovery through proof-of-concept (Phase II) more cost effectively than the traditional drug development paradigm. Data from published studies on drug development costs have been compared with a cost structure model for EmergingCo using a framework where all R&D can be accomplished through a virtual network of partnerships within emerging markets. A couple of case studies from China and India are used to lend support to the cost structure model. Such a model, either as a venture backed company or a virtual unit of big pharma, could provide an alternate vehicle for delivering mid-to late stage clinical candidates, similar to Lilly's Chorus model.


2018 ◽  
Vol 46 (6) ◽  
pp. 335-346 ◽  
Author(s):  
Tal Burt ◽  
Le Thuy Vuong ◽  
Elizabeth Baker ◽  
Graeme C. Young ◽  
A. Daniel McCartt ◽  
...  

Phase 0 approaches, including microdosing, involve the use of sub-therapeutic exposures to the tested drugs, thus enabling safer, more-relevant, quicker and cheaper first-in-human (FIH) testing. These approaches also have considerable potential to limit the use of animals in human drug development. Recent years have witnessed progress in applications, methodology, operations, and drug development culture. Advances in applications saw an expansion in therapeutic areas, developmental scenarios and scientific objectives, in, for example, protein drug development and paediatric drug development. In the operational area, the increased sensitivity of Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS), expansion of the utility of Positron Emission Tomography (PET) imaging, and the introduction of Cavity Ring-Down Spectroscopy (CRDS), have led to the increased accessibility and utility of Phase 0 approaches, while reducing costs and exposure to radioactivity. PET has extended the application of microdosing, from its use as a predominant tool to record pharmacokinetics, to a method for recording target expression and target engagement, as well as cellular and tissue responses. Advances in methodology include adaptive Phase 0/Phase 1 designs, cassette and cocktail microdosing, and Intra-Target Microdosing (ITM), as well as novel modelling opportunities and simulations. Importantly, these methodologies increase the predictive power of extrapolation from microdose to therapeutic level exposures. However, possibly the most challenging domain in which progress has been made, is the culture of drug development. One of the main potential values of Phase 0 approaches is the opportunity to terminate development early, thus not only applying the principle of ‘kill-early-kill-cheap’ to enhance the efficiency of drug development, but also obviating the need for the full package of animal testing required for therapeutic level Phase 1 studies. Finally, we list developmental scenarios that utilised Phase 0 approaches in novel drug development.


2010 ◽  
Vol 9 (4) ◽  
pp. 214-219
Author(s):  
Robyn J. Barst

Drug development is the entire process of introducing a new drug to the market. It involves drug discovery, screening, preclinical testing, an Investigational New Drug (IND) application in the US or a Clinical Trial Application (CTA) in the EU, phase 1–3 clinical trials, a New Drug Application (NDA), Food and Drug Administration (FDA) review and approval, and postapproval studies required for continuing safety evaluation. Preclinical testing assesses safety and biologic activity, phase 1 determines safety and dosage, phase 2 evaluates efficacy and side effects, and phase 3 confirms efficacy and monitors adverse effects in a larger number of patients. Postapproval studies provide additional postmarketing data. On average, it takes 15 years from preclinical studies to regulatory approval by the FDA: about 3.5–6.5 years for preclinical, 1–1.5 years for phase 1, 2 years for phase 2, 3–3.5 years for phase 3, and 1.5–2.5 years for filing the NDA and completing the FDA review process. Of approximately 5000 compounds evaluated in preclinical studies, about 5 compounds enter clinical trials, and 1 compound is approved (Tufts Center for the Study of Drug Development, 2011). Most drug development programs include approximately 35–40 phase 1 studies, 15 phase 2 studies, and 3–5 pivotal trials with more than 5000 patients enrolled. Thus, to produce safe and effective drugs in a regulated environment is a highly complex process. Against this backdrop, what is the best way to develop drugs for pulmonary arterial hypertension (PAH), an orphan disease often rapidly fatal within several years of diagnosis and in which spontaneous regression does not occur?


2019 ◽  
Vol 39 (2) ◽  
pp. 141-150
Author(s):  
Nicola J. Stagg ◽  
Hanan N. Ghantous ◽  
Robert Roth ◽  
Kenneth L. Hastings

Nonclinical toxicology studies are conducted to characterize the potential toxicities and establish a safe starting dose for new drugs in clinical studies, but the question remains as to how predictable/translatable the nonclinical safety findings are to humans. In many cases, there is good concordance between nonclinical species and patients. However, there are cases for which there is a lack of predictivity or translatability that led to early termination of clinical studies due to unanticipated toxicities or early termination of programs before making it to the clinic due to unacceptable nonclinical toxicities assumed to be translatable. A few case examples of safety findings that are translatable versus safety findings that are not translatable and why they are not translateable were presented as a symposium at the 38th Annual Meeting of the American College of Toxicology in Palm Springs, California, and are discussed in this article.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A431-A431
Author(s):  
Michael Yellin ◽  
Tracey Rawls ◽  
Diane Young ◽  
Philip Golden ◽  
Laura Vitale ◽  
...  

BackgroundCD27 ligation and PD-1 blockade elicit complementary signals mediating T cell activation and effector function. CD27 is constitutively expressed on most mature T cells and the interaction with its ligand, CD70, plays key roles in T cell costimulation leading to activation, proliferation, enhanced survival, maturation of effector capacity, and memory. The PD-1/PD-L1 pathway plays key roles in inhibiting T cell responses. Pre-clinical studies demonstrate synergy in T cell activation and anti-tumor activity when combining a CD27 agonist antibody with PD-(L)1 blockade, and clinical studies have confirmed the feasibility of this combination by demonstrating safety and biological and clinical activity. CDX-527 is a novel human bispecific antibody containing a neutralizing, high affinity IgG1k PD-L1 mAb (9H9) and the single chain Fv fragment (scFv) of an agonist anti-CD27 mAb (2B3) genetically attached to the C-terminus of each heavy chain, thereby making CDX-527 bivalent for each target. Pre-clinical studies have demonstrated enhanced T cell activation by CDX-527 and anti-tumor activity of a surrogate bispecific compared to individual mAb combinations, and together with the IND-enabling studies support the advancement of CDX-527 into the clinic.MethodsA Phase 1 first-in-human, open-label, non-randomized, multi-center, dose-escalation and expansion study evaluating safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of CDX-527 is ongoing. Eligible patients have advanced solid tumor malignancies and have progressed on standard-of-care therapy. Patients must have no more than one prior anti-PD-1/L1 for tumor types which have anti-PD-1/L1 approved for that indication and no prior anti-PD-1/L1 for tumor types that do not have anti-PD-1/L1 approved for that indication. CDX-527 is administered intravenously once every two weeks with doses ranging from 0.03 mg/kg up to 10.0 mg/kg or until the maximum tolerated dose. The dose-escalation phase initiates with a single patient enrolled in cohort 1. In the absence of a dose limiting toxicity or any ≥ grade 2 treatment related AE, cohort 2 will enroll in a similar manner as cohort 1. Subsequent dose-escalation cohorts will be conducted in 3+3 manner. In the tumor-specific expansion phase, up to 4 individual expansion cohort(s) of patients with specific solid tumors of interest may be enrolled to further characterize the safety, PK, PD, and efficacy of CDX 527. Tumor assessments will be performed every 8-weeks by the investigator in accordance with iRECIST. Biomarker assessments will include characterizing the effects on peripheral blood immune cells and cytokines, and for the expansion cohorts, the impact of CDX-527 on the tumor microenvironment.ResultsN/AConclusionsN/ATrial RegistrationNCT04440943Ethics ApprovalThe study was approved by WIRB for Northside Hospital, approval number 20201542


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1045
Author(s):  
Marta B. Lopes ◽  
Eduarda P. Martins ◽  
Susana Vinga ◽  
Bruno M. Costa

Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document